www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(6): 2645-2649 © 2023 TPI www.thepharmajournal.com

Received: 05-04-2023 Accepted: 10-05-2023

Vani NU

Ph.D. Scholar, Department of Horticulture with Specialization in Fruit Science, IGKV, Raipur, Chhattisgarh, India

PC Tripathi

Principal Scientist, Division of Fruit Crops, ICAR-IIHR, Bengaluru, Karnataka, India

A Prabhakar Singh

Head of the Department, Fruit Science Department, College of Agriculture, IGKV, Raipur, Chhattisgarh, India

V Keshava Rao

Principal Scientist, Division of Basic Sciences, ICAR-IIHR, Bengaluru, Karnataka, India

HK Panigrahi

Assistant Professor, Fruit Science Department, College of Agriculture, IGKV, Raipur, Chhattisgarh, India

P Katiyar

Head of the Department, Plant Physiology department, IGKV, Raipur, Chhattisgarh, India

RR Saxena

Professor, Department of Statistics, IGKV, Raipur, Chhattisgarh, India

Corresponding Author: Vani NU Ph.D. Scholar, Department of Horticulture with Specialization

Horticulture with Specialization in Fruit Science, IGKV, Raipur, Chhattisgarh, India

Growth parameters of jamun (Syzygium cumini Skeels.) genotypes

Vani NU, PC Tripathi, A Prabhakar Singh, V Keshava Rao, HK Panigrahi, P Katiyar and RR Saxena

Abstract

The present investigation entitled "Growth parameters of jamun (*Syzygium cumini* Skeels.) genotypes" was carried during 2020-22. The study comprised 65 genotypes maintained in the jamun germplasm block of ICAR- Indian Institute of Horticultural Research, Hesaraghatta, Bangalore. Data on growth parameters like plant height, plant girth, plant canopy, leaf length, leaf width, leaf petiole length, leaf length: breadth ratio of 65 jamun genotypes were observed. The genotype PGR-1 recorded maximum plant height (861.67 cm), plant canopy (E-W) (1026.57 cm) and plant canopy (N-S) (1141.5 cm). The genotype SS-6 recorded minimum plant height (402.50 cm), plant canopy (E-W) (237.5 cm) and plant canopy (N-S) (238.33 cm). Maximum plant girth (300.29 cm) was recorded in B-VI-13-1 and the minimum plant girth (58.33 cm) was found in PGR-14. The maximum leaf length (18.08 cm) was obtained in B-VI-12-1 and the minimum leaf length (10.51 cm) in Kaveripatnam-2. Maximum leaf width (8.2 cm) was found in PGR-13 and the minimum leaf width (3.8 cm) in MP-2. The maximum leaf petiole length (3.52 cm) was found in KHA-3 and the minimum petiole length (1.25 cm) in Kaveripatnam-2. The maximum length: breadth (3.07) was recorded in MP-2 and the minimum length: breadth (1.73) in PGR-7.

Keywords: Jamun, genotypes, growth, Syzygium cumini

Introduction

One of the hardest fruit crops is jamun (*Syzygium cuminii*), which can thrive easily in neglected swampy places where other fruit trees cannot. The fruit is a good source of iron, sugars, minerals, protein, carbohydrate, vitamins and phytochemicals owing to the formulations of various ayurvedic medicines. etc. Some pharmacological properties of jamun reported are Antidiabetic, Hypolipidemic, Antibilious, Digestive, Carminative, Appetizer, Stomachic, General tonic and liver tonic, Antidiarrheal, Astringent to bowel, Enriches the blood, Strengthens the teeth and gums, Antiscorbutic, Diuretic, Anti-inflammatory, Anthelmintic and Antimicrobial activity. Jamun is indeed a highly valued evergreen tree with medicinal importance, and it is considered as a minor fruit crop in India. Despite its importance, information regarding jamun genetic resources in India is limited, and its complete potential has not been fully discovered yet.

Materials and methods

An experiment was conducted to evaluate the genotypes with respect to growth characters during 2020-21 and 2021-22. The study was carried out with 65 genotypes that were collected and established at germplasm block of the division of fruit crops at ICAR- IIHR, Bengaluru. The experiment was designed with three trees from each genotype and each tree was considered as one replicate. Trees that are well grown, uniform statured trees of jamun were selected for the experiment. The trees were planted in a square pattern, 5 meters apart. Random numbers were used to choose the treatmental trees (Oliver, 1965)^[6].

Tree height was recorded with the help of measuring pole from the ground surface to the maximum height attained by the plant and recorded in centimetre (cm). The girth of the trunk is usually signified as the collar portion of the main stem of the plant circumference and was measured at an interval of 30 cm from the ground level and labeled in centimeters. Tree spread was recorded for each tree by putting the measuring tape horizontally with the tree from East-West and North-South and mean spread was worked out in centimetre (cm).

The length of leaf was measured from the point of petiole attachment to the tip of leaf. An average of ten leaves from four different direction of the plant was measured for the analysis of the length with scale and was expressed in centimeters. Leaf breadth of randomly selected ten mature leaves was recorded using a scale and expressed in centimeters. The petiole length was measured from the tip of petiole to the starting point of leaf lamina and expressed in centimeter. The leaf length to leaf breadth ratio was calculated by dividing leaf length by leaf breadth. The data on various characters were subjected to Fisher's method of analysis of variance and the interpretation of data as given by Panse and Sukhatme (1967)^[7]. The level of significance used for 'F' and 't' tests was p= 0.05. Critical difference (CD) values were calculated whenever the 'F' test was significant.

Results and Discussion

The analysis of variance (ANOVA) worked out for growth characters of each of the 65 genotypes was drawn out individually for two year 2020-21, 2021-22 and pooled data. The investigation recorded considerable variation for the traits in the studied genotypes.

In the 2020–21 growing season, plant height ranged from 371.67 cm (SS-6) to 819.80 cm (B-IV-13-1). In the years 2021–22, it varied from 416.67 cm (KHA-3) to 940 cm (PGR-1). 553.44 cm was the mean performance for the pooled years (Table-1) while the minimum plant height (402.50 cm) was found in SS-6 and maximum plant height (861.67 cm) in PGR-1 which is at par with B-IV-13-1 (841.57 cm) followed by PGR-12 (767.35 cm) and Jayanagar-2 (738.33 cm). In the 2020–21 growing season, plant girth ranged from 57.67 cm (PGR-14) to 299.90 cm (B-IV-13-1). In the years 2021–22, it varied from 59 cm (PGR-14) to 300.67 cm (B-IV-13-1) (Table 1). 146.1 cm was the mean performance for the pooled years while the minimum plant girth (300.29 cm) in B-IV-13-1 preceded by B-IV-12-1 (284.24 cm) and Patna (213.78 cm).

In the 2020–21 growing season, plant canopy east-west ranged from 231.33 cm (SS-6) to 1020.14 cm (PGR-1). In the years 2021–22, it varied from 261.67 cm (SS-6) to 1033 cm (PGR-1) (Table 1). 511.09 cm was the mean performance for the pooled years while the maximum plant canopy (E-W) (1026.57 cm) was found in PGR-1 preceded by PGR-7 (999.17 cm) and PGR-9 (914.17 cm) and the minimum plant canopy (E-W) (237.5 cm) in SS-6. In the 2020–21 growing season, plant canopy north-south ranged from 190.00 cm (SS-6) to 1135.00 cm (PGR-1). In the years 2021–22, it varied from 265.00 cm (Kaveripatnam-2) to 1148.00 cm (PGR-1)

(Table 1). 503.94 cm was the mean performance for the pooled years while the maximum plant canopy (N-S) (1141.5 cm) was found in PGR-1 pursued by PGR-7 (973.50 cm) and the minimum plant canopy (N-S) (238.33 cm) in SS-6.

In the 2020–21 growing season, leaf length ranged from 9.88 cm (Kaveripatnam-2) to 18.03 cm (B-IV-12-1). In the years 2021–22, it varied from 10.64 cm (MP-5) to 19.3 cm (KHA-18) (Table 2). 13.68 cm was the mean performance for the pooled years while the maximum leaf length (18.08 cm) was found in B-IV-12-1 which is at par with B-IV-13-1 followed by KHA-25 (16.69 cm) and the minimum leaf length (10.51 cm) in Kaveripatnam-2. In the 2020–21 growing season, leaf width ranged from 3.44 cm (MP-2) to 8.1 cm (PGR-13). In the years 2021–22, it varied from 3.22 cm (MP-5) to 8.30 cm (PGR-13) (Table 2). 6.19 cm was the mean performance for the pooled years while the maximum leaf width (8.2 cm) was found in PGR-13 pursued by Paiyur-4 (7.67 cm) and the minimum leaf width (3.8 cm) in MP-2.

In the 2020–21 growing season, leaf petiole length ranged from 1.24 cm (DMS-4) to 4.23 cm (KHA-3). In the years 2021–22, it varied from 1.17 cm (Kaveripatnam-2) to 19.3 cm (KHA-21) (Table 2). 2.13 cm was the mean performance for the pooled years while the maximum leaf petiole length (3.52 cm) was found in KHA-3 preceded by Collection-10 (3.23 cm) and the minimum petiole length (1.25 cm) in Kaveripatnam-2. In the 2020–21 growing season, leaf length: breadth ranged from 1.72 (PGR-7) to 3.25 (MP-2). In the years 2021–22, it varied from 1.74 (PGR-7) to 3.31 (MP-5) (Table 2). 2.24 was the mean performance for the pooled years while the maximum length: breadth (3.07) was found in MP-2 which is at par with MP-5 (3.03) preceded by Collection-6 (2.83) and the minimum length: breadth (1.73) in PGR-7.

The similar significant variation in plant height of jamun was reported by Prabhuraj *et al.* (2002)^[8], Kaur and Bal (2015)^[4], Shamsher and Amarjeet (2016)^[9] and Anushma and Anuradha (2018)^[1]. The similar variation in plant girth of jamun was reported by Prabhuraj *et al.* (2002a)^[8], Laxmikanth (2004)^[5], Anushma and Anuradha (2018)^[1]. The similar variation in plant canopy of jamun was reported by Singh *et al.* (2016)^[11], Swamy *et al.* (2017)^[12] and Anushma and Anuradha (2018)^[1]. Similar results in leaf parameters were reported by Athani *et al.* (2009)^[2], Ayyanar and Subash-Babu (2012)^[3], Anushma and Anuradha (2018)^[1] and Singh *et al.* (2002)^[8], Athani *et al.* (2009)^[2] and Anushma and Anuradha (2018)^[1] in jamun.

Table 1: Assessing the variability of jamun genotypes for growth parameters

SI no	Construis nome	Plant height (cm)			Plant girth (cm)			Plant s	pread E-'	W (cm)	Plant spread N-S (cm)		
51. 110	Genotype name	2020	2021	Pooled	2020	2021	Pooled	2020	2021	Pooled	2020	2021	Pooled
1	Selection-45	466.67	496.7	481.67	143.13	144.7	143.92	395	400	397.5	435	441.67	438.33
2	Selection-58	485	493.3	489.17	133.97	134.76	134.37	468.33	480	474.17	451.67	480	465.83
3	Savadatti	418.33	430	424.17	140.25	142.61	141.43	420	428.33	424.17	465	470	467.5
4	Kaithnal	496.67	568.3	532.5	128.48	138.42	133.45	484.33	485	484.67	438.33	461.67	450
5	AJG-85	498.33	510	504.17	146.8	154.91	150.85	489	516.67	502.83	473.33	515	494.17
6	IC-715	390	420	405	128.22	129.26	128.74	473	486.67	479.83	450	455	452.5
7	Konkan Bahadoli	503.33	531.7	517.5	158.57	159.09	158.83	461.67	473.33	467.5	410	418.33	414.17
8	Collection -2	426.67	443.3	435	157.26	158.57	157.92	419.33	448.33	433.83	426.67	435	430.83
9	Collection -3a	438.33	463.3	450.83	159.62	160.14	159.88	476.67	503.33	490	430	516.67	473.33
10	Collection -4a	400	431.7	415.83	112.78	114.35	113.56	308.33	338.33	323.33	391.67	435	413.33
11	Collection -12	508.33	526.7	517.5	153.86	156.22	155.04	500	530	515	485.91	545	515.46
12	Chinnapalli	495	535	515	170.08	173.75	171.92	463.33	486.67	475	496.67	510	503.33
13	Goma Privanka	498.33	516.7	507.5	144.96	145.75	145.36	416.67	445	430.83	465	467.67	466.33
14	Kaveripattanam-4	513.33	528.3	520.83	155.69	159.09	157.39	420	450	435	445	456.67	450.83
15	Collection-5	568 33	571.7	570	129.79	130.31	130.05	455	461.67	458 33	421.67	468 33	445
16	Collection -3	586.67	625	605.83	142.06	144 18	143.12	365	378 33	371.67	355	378 33	366.67
17	Collection 4	503.33	681.7	592.5	180.03	180.29	180.16	357	380	368.5	471 67	506.67	489.17
18	Collection 6	456.67	526.7	491.67	153.6	163.29	158.44	480	493 33	486.67	450	453 33	451.67
10	Collection -8	474 33	536.7	505 5	159.09	166.68	162.89	435	465	450	415	446 67	430.83
20	Collection -9	418 33	556.7	187.5	127.60	130.05	102.07	330	355	3/2 5	300	303 33	301.67
20	Collection -10	463.33	506.7	485	140.52	140.78	140.65	360	305	377.5	1/18 33	188 33	468.33
21	Collection 11	403.33	565	407.5	163 10	163.78	163 23	168 33	471.67	470	440.33	400.33	400.33
22	Collection 12	430	520	497.J	105.19	105.28	105.25	400.55	4/1.07	470	436.33	446.55	445.55
23	Kayarinattanam 2	493.33	320 472.2	441.67	1111.00	130.22	112 17	401.07	436.33	420	255	265	455.55
24	Hirabally	410	475.5	519 22	111.99	114.33	115.17	260 22	201.07	269 67	255	203	260.22
25	Humiliohikkonahallu	430	559.2	527.5	159 21	150.40	159.90	406.67	373 409 22	407.5	196.55	400	109.33
20	Dhamuad market somela 2	622.22	536.5	537.5	206.46	136.37	136.44	400.07	408.33	407.5	480.07	490 544	400.33
27	Dharwad market sample -2	023.33	591 7	570	200.40	200.72	200.39	520	575	529.22	340	344	342
28	Dharwad market sample -3	228.33	200	570	1/8.2	180.05	182.12	530.07	540	538.33	4/5	491.07	485.55
29	Dharwad market sample -4	/00	792.2	700	185.17	185	184.08	514	535.55	535.07	4/8.33	484.33	481.33
30	Jayanagar -2	093.33 592.22	185.5	/38.33	200.72	208.03	207.57	271.77	295	222.83	491.07	495	495.55
22	Madhya Pradesh 5	505.55	655	620.82	152.55	205.15	202.07	5/1.07	511.67	5/6.55	510	405.55 540	592.5
32	With 26	402.22	455	420.17	106.5	205.15	112.92	250	200	270	269.22	405	296.67
24		405.55	455	429.17	74.67	121.1J 95.2	70.00	275	296.67	290.92	251 67	265	258 22
25	KIA-3	410.07	410.7	410.07	125.54	03.3	120 12	290	300.07	412.22	205	303	422.5
33		438.33	491.7	4/3	133.34	141.5	138.42	360	440.07	415.55	363	400	422.3
27	КПА-10 КЦА 12	403.33	495	489.17	138.10	145.92	141.04	430.07	401.07	409.17	431.07	408.33	400
20	КПА-13	566.67	033.3	022.3 501.67	129.09	126.05	129.37	291 (7	420.07	408.55	390.07	425.55	410
20	КПА-14	200.07	010.7	391.07	123.14	150.65	131	301.07	430.07	409.17	205	403	599.17
39	КПА-23	303	420.7	404.85	137.9	152.24	143.73	415	445.55	429.17	291 (7	455	415
40	КПА-21	441.07	481.7	401.07	140.78	155.54	147.00	393.33	421.07	407.5	381.07	389.07	385.07
41	KHA-18	540	023.3 521.7	381.07	137.23	139.99	138.02	328.33	350	339.17	275	303.33	300.83
42	KHA-24	4/0.0/	521.7	499.17	134.5	149.41	141.95	410	430.07	425.55	3/3	4/3.33	424.17
43	55-0 DCD 1	3/1.0/	433.3	402.5	103.02	127.09	115.00	213.33	201.07	237.5	190	280.07	238.33
44	PGR -1	783.33	940	801.07	155.29	155.5	155.5	720	1035	1020.57	1155	1148	1141.5
45	POK -2	540.07	021./	546.07	112	113.2	112.0	/20	/51.6/	123.85	804.54	8/1.6/	808.1
46	PGR -4	540.87	551.7	546.27	111.99	112.82	112.4	847.21	800	851.11	820.69	826.67	823.68
4/	PGR -5	528.97	560	544.48	115.33	117.00	116.5	060	061.07	660.83	680	696.67	688.33
48	PGR -6	601.97	623.3	612.65	13/	137.05	137.02	860.25	868.33	864.29	685.59	691.67	688.63
49	PGR -/	679.83	/00	689.92	135	130.14	105.10	990	1008.33	999.17	905	982	975.5
50	PGR -8	621.47	628.3	624.9	104	106.36	105.18	865.18	8/8.33	8/1./6	/85	/88	/86.5
51	PGR -9	683.77	/08.3	696.05	123.36	123.37	123.37	910	918.33	914.17	860.35	8/1.6/	866.01
52	PGR -10	503.67	527.7	515.67	58	59.24	58.62	460	4/1.6/	465.83	410.12	423.33	416./3
53	PGR -11	598.7	636.7	617.68	63	65.46	64.23	570.24	578.33	574.29	430	445	437.5
54	PGR -14	551.56	581.7	566.61	57.67	59	58.33	608.65	628.33	618.49	534.52	541.67	538.09
55	Block 6-12-1	694.83	698.3	696.58	283.81	284.67	284.24	630	641.67	635.83	550	5/1.67	560.83
56	Block 6-13-1	819.8	863.3	841.57	299.9	300.67	300.29	645	660	652.5	670	680	675
57	Madhya Pradesh -2	596.67	670	633.33	167.44	169.3	168.37	465	486.67	475.83	455	468.33	461.67
58	PGR -3	586.33	605	595.67	131	131.13	131.07	770	772	771	880	888.33	884.17
59	PGR -12	756.38	778.3	767.35	105	107.06	106.03	660	671.67	665.83	500	518.33	509.17
60	PGR -13	513.93	540.7	527.3	63.98	64.05	64.02	565	568.33	566.67	480	495	487.5
61	Collection -7	481.67	485	483.33	176.36	177.41	176.89	475	513.33	494.17	475	481.67	478.33
62	Chikkodi	673.33	726.7	700	152.03	169.56	160.79	508	508.33	508.17	388.33	391.67	390
63	Paiyur -4	463.33	498.3	480.83	154.38	159.09	156.74	415	443.33	429.17	443.33	455	449.17

The Pharma Innovation Journal

https://www.thepharmajournal.com

64	Patna	658.33	731.7	695	212.74	214.83	213.78	490	521.67	505.83	483	496.67	489.83
65	Dhoopdal	445	468.3	456.67	141.82	144.44	143.13	488.67	505	496.83	443.33	488.33	465.83
	Mean	532.42	574.47	553.44	144.07	148.12	146.10	500.72	521.46	511.09	493.49	514.39	503.94
	SE (m)	16.68	15.426	11.66	6.82	2.961	3.674	15.2	11.276	9.559	9.77	10.173	7.215
	CD @ 5%	46.68	43.166	32.628	19.09	8.284	10.281	42.54	31.553	26.749	27.33	28.468	20.188

Table 2: Mean performance on growth characters of jamun genotypes

CI	Q (Leaf length (cm)			Lea	f widtl	n (cm)	Leaf p	etiole ler	igth (cm)	Leaf length: width		
SI. no	Genotype name	2020	2021	Pooled	2020	2021	Pooled	2020	2021	Pooled	2020	2021	Pooled
1	Selection-45	13.05	14.73	13.89	5.69	6.6	6.15	2.17	2.15	2.16	2.3	2.23	2.26
2	Selection-58	12.39	13.01	12.7	5.39	5.94	5.67	2.24	1.94	2.09	2.3	2.19	2.25
3	Savadatti	12.49	13.54	13.02	5.72	6.33	6.03	2.12	2.04	2.08	2.18	2.14	2.16
4	Kaithnal	12.57	14.33	13.45	5.75	6.16	5.96	1.68	1.8	1.74	2.19	2.33	2.26
5	AIG-85	12.26	13.95	13.11	5 32	5.94	5.63	2.56	2.16	2.36	2.31	2.35	2.33
6	IC-715	14.25	15.11	14.68	6.3	6.07	6.19	1.46	1.81	1.64	2.26	2.49	2.38
7	Konkan Bahadoli	11.20	12.36	11.8	5.67	6.97	6.32	2.75	2.07	2.41	1.98	1 77	1.88
8	Collection -2	12.53	14 71	13.62	6.09	6.72	6.41	2.73	2.58	2.11	2.06	2.19	2.12
9	Collection -3a	12.55	12.77	12.85	6.49	7.02	676	2.22	2.00	2.4	1.00	1.82	1.91
10	Collection -4a	12.93	14.84	13.01	5.15	6	5.58	2 09	1.74	1.92	2.52	2.48	2.5
10	Collection -12	12.70	10.00	11.80	5.5	5 57	5.50	2.07	1.74	2.2	2.32	1.40	2.5
12	Chinnapalli	12.75	13.88	12.07	5.75	6.87	6.31	2.52	1.07	2.2	2.55	2.02	2.15
12	Goma Privanka	12.00	12.00	12.57	63	6.76	6.53	2.20	1.71	1.04	2.1	1.02	2.00
13	Kaveripattanam A	11.06	12.45	12.00	6.14	7.32	6.88	1.02	1.04	1.04	2.05	1.04	1.75
14	Collection 5	12.36	15.07	12.92	4 57	7.52	5.82	1.92	1.90	1.94	2.7	2.23	2.47
15	Collection 3	15.22	16.07	14.07	4.57	6.22	5.02	1.7	1.01	1.70	2.7	2.23	2.47
10	Collection 4	10.00	12.07	12.7	5.52	5 41	5.00	1.07	1.70	1.72	2.10	2.30	2.00
1/	Collection 6	12.0	13.20	12.94	J.1 1 04	J.41 1 75	1.20	2.82	2 10	2.51	2.41	2.40	2.40
10	Collection 8	13.34	14.03	13.7	4.74	4./J	4.00	2.03	2.19	2.51	2.7	2.90	2.03
20	Collection 0	14.05	11.4	14.72	0.78	5.19	5.99	2.01	2.44	2.35	2.07	2.2	2.15
20	Collection 10	13.11	15.94	14.55	5.12	6.33	0.43 5.76	2.23	1.78	2.32	2.5	2.2	2.23
21	Collection 11	12.91	10.21	14.30	5.12	0.39 5.42	5.70	2.57	3.09	3.23	2.35	2.34	2.35
22	Collection 12	14.05	11.70	13.2	0.25	5.45	5.65	2.82	2.82	2.82	2.55	2.17	2.20
23	Koveringttenem 2	0.99	12.20	12.10	5.40	5.22	5.19	2.79	2.37	2.30	2.21	2.12	2.02
24	Hirobally	9.00	11.14	12.10	5.14	5.22	5.10	2.50	2.22	2.41	1.92	2.15	2.03
25	Humlichikkanahally	12.09	12.08	12.19	0.83	5.02	5.24	2.39	2.25	2.41	$\frac{2}{20}$	2.2	2.1
20	Dharmad market semple 2	13.17	12.15	12.13	4.54	5.95	5.24	2.44	2.22	2.22	2.9	2.21	2.30
27	Dharwad market sample -2	14.1	13.33	13.73	5.92	6.21	5.80	2.44	2.22	2.35	2.30	2.51	2.34
20	Dharwad market sample 4	12.0	14.95	14.53	5.45	6.03	5.78	2.08	2.55	1.42	2.55	2.4	2.38
30	Javanagar -2	15.09	13.17	14.55	5.52	6.26	5.78	1.24	1.0	1.42	2.32	2.52	2.32
31	Madhya Pradesh -3	13.37	12.07	12.88	6.58	6.70	6.69	3.16	2.66	2.01	2.33	1.82	1.03
32	Madhya Pradesh -5	13.37	10.64	12.00	1.88	3.22	4.05	1 32	2.00	1.37	2.04	3 31	3.03
32	KHA-26	13.44	12.65	12.04	5 70	5 30	5.50	2.05	2.17	2.11	2.70	2 35	2.03
34	KHA-20	13.5	12.05	13.20	62	632	6.26	4.23	2.17	2.11	2.4	2.55	2.37
35	КНА-1	15.05	15.29	15.02	6.48	5.97	6.20	2.06	2.01	2 33	2.2 2.34	2.15	2.10
36	КНА-16	11.82	13.27	12.83	6.57	7.25	6.01	2.00	2.57	2.33	1.94	1.01	1.85
37	КПА-10 КНА-13	15.68	15.05	15.79	6.44	6.07	6.26	1.46	1.88	1.67	2.44	2.62	2.53
38	КПА-13 КНА-14	14.03	11.9	12.97	5.46	674	6.1	1.40	1.50	1.07	2.77	1.77	2.55
39	КПА-14 КНА-25	16.9	16.48	16.69	7.43	6.85	7.14	1.55	2.83	2.29	2.37	2.41	2.17 2.34
40	КПА-23	15.91	17.29	16.6	6.48	6.66	6 57	2 33	3.11	2.2)	2.27	2.41	2.54
40	КНА-18	14.16	19.3	16.73	6 31	6.00	6.62	1.91	1.84	1.88	2.40	2.0	2.55
42	КПА-10	12.51	15.61	14.06	4 98	6.25	5.62	2 79	2 59	2.69	2.24	2.17	2.52
43	SS-6	14.13	14.13	14.00	6.31	6.55	6.43	2.77	2.37	2.07	2.31 2.24	2.5	2.51
43	PGR -1	13.87	14.07	13.97	6.76	6.86	6.81	17	17	17	2.24	2.17	2.05
45	PGR -2	13.07	13.93	13.93	7 44	7 44	7 44	2	2	2	1.87	1.87	1.87
46	PGR -4	14.04	14.07	14.06	6.6	67	6.65	1.95	1.95	1.95	2.13	2.1	2.11
40	PGR -5	13	13.12	13.06	6.48	6.64	6.56	2	2	2	2.13	1.98	1 99
48	PGR -6	12.48	12 54	12.51	6.7	63	6.25	2 32	2 32	2 32	2.01	1.90	2
40	PGR -7	11 41	11 51	11 46	6.63	6.63	6.63	2.52	2.52	2.52	1 72	1 74	1 73
50	PGR -8	11.41	11.51	11.40	5.98	6.06	6.02	2.02	2.02	2.02	1.72	1.97	1.75
51	PGR -9	11.04	12.04	12	6.25	6.25	6.02	2.00	2.00	2.00	1 91	1.92	1.93
52	PGR -10	12.93	13 33	13 13	69	69	69	2.20	2.20	2.20	1.91	1.93	1.92
53	PGR -11	13.83	13.93	13.88	7.02	7.08	7.05	2 14	2.14	2.14	1.07	1.97	1.7
54	PGR -14	15.33	15.37	15.00	6.99	7.07	7.03	3.01	3.01	3.01	2.2	2.18	2.19
55	Block 6-12-1	18.03	18.13	18.08	7.02	7.05	7.04	2.08	2.08	2.08	2.57	2.57	2.57
56	Block 6-13-1	17.85	17.95	17.9	6.64	6.72	6.68	2.6	2.61	2.00	2.69	2.67	2.68
57	Madhya Pradesh -2	11 19	12.01	11.6	3.44	4.15	3.8	1.6	1.28	1.44	3.25	2.9	3.07
51	muunju i fuucon 2	11.17	12.01	11.0	5.77		2.0	1.0	1.20	1.77	5.25	/	5.07

The Pharma Innovation Journal

https://www.thepharmajournal.com

58	PGR -3	15	15	15	7.34	7.54	7.44	2.05	2.05	2.05	2.04	1.99	2.02
59	PGR -12	12.3	12.32	12.31	5.23	5.23	5.23	1.74	1.74	1.74	2.35	2.36	2.35
60	PGR -13	14.84	14.84	14.84	8.1	8.3	8.2	1.81	1.81	1.81	1.83	1.79	1.81
61	Collection -7	13.39	12.66	13.03	5.92	6.56	6.24	2.48	1.92	2.2	2.26	1.93	2.1
62	Chikkodi	16.43	13.97	15.2	7.29	5.97	6.63	1.82	1.73	1.78	2.26	2.34	2.3
63	Paiyur -4	14.31	15.48	14.9	7.1	8.24	7.67	2.16	2.17	2.17	2.02	1.88	1.95
64	Patna	11.6	12.26	11.93	4.7	4.94	4.82	1.96	1.77	1.87	2.47	2.48	2.48
65	Dhoopdal	12.44	12.81	12.63	5.1	7.05	6.08	1.67	2.08	1.88	2.44	1.82	2.13
	Mean	13.51	13.86	13.69	6.05	6.34	6.19	2.17	2.09	2.13	2.26	2.22	2.24
	SE (m)	0.202	0.215	0.139	0.082	0.087	0.062	0.032	0.033	0.024	0.046	0.033	0.032
	CD @ 5%	0.565	0.6	0.388	0.23	0.245	0.173	0.089	0.093	0.067	0.13	0.093	0.091

Conclusion

There is a lot of diversity among the genotypes under study for plant height, plant girth, plant canopy, leaf length, leaf width, leaf petiole length, leaf length: breadth. The genotypes which recorded highest mean performance for growth characters are PGR-1 for plant height (861.67 cm), plant canopy (E-W : 1026.57 cm) and plant canopy (N-S: 1141.5 cm), B-VI-13-1 for plant girth (300.29 cm), B-VI-12-1 for leaf length (18.08 cm), PGR-13 for leaf width (8.2 cm), KHA-3 for leaf petiole length (3.52 cm), MP-2 for length: breadth (3.07). PGR-1, PGR-13, B-VI-13-1, B-VI-12-1 and KHA-3 were superior in recording the growth attributes thereby improving the other attributes of jamun genotypes which can be harnessed for conservation and utilized further for breeding purpose.

Acknowledgements

The author would like to thank their respective advisory committee and Institutes for rendering academic support for the successful completion of the research work. I am thankful to all the scientists and professors for their assistance in the completion of this research work.

References

- 1. Anushma PL, Anuradha S. Assessing variability in morphological traits of jamun (*Syzygium cumunii* Skeels) genotypes. J Plant Develop. Sci. 2018;10(11):629-632.
- 2. Athani SI, Revanappa, Allolli TB. Tree architectural characters and yield of *Syzygium cumunii* (Jamun) strains. J of Ecob. 2009;25(3):293-296.
- Ayyanar M, Subash-Babu P. Syzygium cumunii (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J Trop. Biomed. 2012;2(3):240-246.
- 4. Kaur M, Bal JS. An evaluation of Jamun (*Syzygium cuminii*) germplasm for conservation of elite ones. Hort .Flora Res. Spectru. 2015;4(4):342-346.
- 5. Laxmikanth. Investigation of elite jamun (*Syzygium cuminii*) selects. M.Sc. (Hort) thesis, Univ. of Agril. Sci., Dharwad, 2004.
- 6. Oliver Lacey L. Statistical Methods in Experimentation. 1965;1:11-30.
- 7. Panse, Sukhathme PV. Statistical methods for Agricultural workers. Indian council of Agricultural Research, New Delhi, 1967.
- 8. Prabhuraj HS, Swamy GSK, Athani SI, Patil BR, Hulamani NC, Patil PB. Variability in morphological characteristics of jamun (*Syzygium cumunii* Skeels) trees. My For. 2002a;38(2):187-190.
- 9. Shamsher S and Amarjeet K. Characterization of jamun genotypes in central and sub-montaneous zone of Punjab. Hort flora Res. Spect. 2016; 06(11):9933-9936.

- Singh S, Singh SP, Vaibhav Singh, Kumari Shikha. Studies on floral biology, fruit set and fruit drop of different genotypes of jamun (*Syzygium cumunii* Skeels). The Pharma Innovation Journal. 2019;8(1):558-561
- Singh SY, Vivela DS, Swamy GSK. Genetic variation for morphological and physicochemical traits in jamun (*Syzygium cuminii* Skeels). Asian J Hortic. 2016;11:163-167.
- Swamy GSK, Anushma PL, Jagadeesha RC. Morphological characterization of elite Jamun (*Syzygium cuminii* Skeels) genotypes. Int. J. Minor Fruits, Medicinal and Aromatic Plants. 2017;3(1):09-15.