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Abstract 
The study aimed to investigate the genotype-environment interaction (GEI) among 22 rice genotypes 

across three environments (Raipur, Bilaspur, and Bhatapara districts of Chhattisgarh) during the Kharif 

season of 2019, utilizing GGE bi-plot analysis. The analysis revealed that the major source of variation 

was the interaction between genotype and management, followed by the environment. The first two 

principal components (PCs) of the GGE bi-plot accounted for the majority of the observed variation. The 

AMMI analysis identified specific environments as the most discriminating for different traits. E1 and E2 

were found to be the most discriminating environments for yield, while E3 showed high discrimination 

for zinc content, and E1 exhibited the greatest discrimination for iron content. Additionally, certain 

genotypes were identified as stable performers for specific traits. G2 and G10 were found to be stable 

lines for zinc content, while G18 emerged as the most stable line for iron content. The "which-won-

where" analysis revealed the presence of three mega-environments (ME) among the test locations for 

yield. Each ME represented a single environment, with specific genotypes identified as winners. For zinc 

content, all environments fell within a single ME, and the winning genotype was G2. In the case of iron 

content, two MEs were identified: one comprising E2 and E3, with G4 and G2 as the winning genotype 

respectively, and another consisting of E1, with G18 as the winning genotype. These findings provide 

valuable insights into the performance and stability of genotypes across different environments for yield, 

zinc content, and iron content. Understanding the specific environments where genotypes perform well 

and identifying stable genotypes for targeted traits can guide breeding efforts to develop rice varieties 

with improved performance and desirable micronutrient characteristics. 

 

Keywords: GEI, GGE bi-plot, AMMI, ME 

 

1. Introduction 

Multi-environment trials (MET) serve as crucial evaluations conducted by plant breeders to 

assess new and improved genotypes across various test environments, encompassing multiple 

locations. These trials aim to determine the extent of genotype-environment (GE) interaction, 

which involves assessing how different genotypes perform across diverse environments. The 

evaluation of GE interaction, as highlighted by researchers such as Annicchiarico (2002) [5], 

Karimizadeh et al. (2012), and Yan et al. (2007) [30], plays a significant role in MET. It 

involves analyzing the varying rankings of genotypes across different environments, offering 

valuable insights to guide the selection process and aid in recommending suitable genotypes 

for specific target environments. By considering GE interaction, breeders can better tailor their 

recommendations and enhance the production of genotypes that cater to the needs of growers. 

This approach is supported by scholars like Ebdon and Gauch (2002) [8] and Gauch (2006) [10]. 

Genotype-environment interaction has been a research focus among the breeders and 

geneticists which would help to get the information on the adaptability and stability 

performance and may complement the selection process and recommendation of a genotype 

for a target environment (Ebdon and Gauch, 2002; Gauch, 2006; Ahmadi et al., 2012; 

Jeberson et al., 2017) [8, 12, 10, 2, 12]. Breeders must therefore use tools to efficiently and 

accurately measure the response of the lines in multiple test environments (Yan et al., 2007) 
[30]. There are several biometric models proposed to analyze the GEI and explore adaptability 

and stability. However, multiplicative models that look at the response of genotypes to specific 

environments or to different environments have more accurate criteria to analyze this 

phenomenon in different crops (Goncalves et al., 2020) [11].  
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Various statistical models such as AMMI (Gauch, 2006) [10] 

and GGE bi-plot models (Yan et al., 2007) [30] are widely used 

across the seasons to assess their stability and to quantify the 

effect of genotype x environment (GXE) interaction on the 

yield of genotypes (Balakrishnan et al., 2016; Rasul et al., 

2017) [6, 22]. Rice is a staple food consumed by a significant 

portion of the global population, with over half of the world 

relying on it as a dietary staple (Rao et al., 2016; Nili et al., 

2017; Sharifi et al., 2017; Poli et al., 2018; Suman et al., 

2021) [21, 17, 23, 19, 25]. Asian countries, in particular, contribute 

approximately 80% of the world's rice production. India, 

among the prominent rice-growing nations, cultivates rice on 

a vast scale, covering an area of about 44.1 million hectares 

and producing 165.3 million tons; however, the productivity 

per unit area remains low at 3.78 t/ha (Kesh et al., 2021) [13]. 

With a growing population, diminishing arable land, and the 

impact of climate change, the need for increased rice 

productivity has become a pressing concern worldwide. The 

sustainability of rice production depends on the development 

of new rice cultivars with high yields and stable performance 

across diverse environments (Akter et al., 2014) [4]. It is 

therefore essential to apply new approaches to increase rice 

yield in already cultivated areas (Khush, 2005) [14]. 

Micronutrient deficiency is a significant nutritional issue 

affecting more than two billion people in developing 

countries, emphasizing the need to enhance the concentration 

and bioavailability of essential micronutrients like iron (Fe) 

and zinc (Zn) in rice grains to improve their nutritional 

quality. Zinc is particularly crucial for the proper functioning 

of over 300 enzymes involved in carbohydrate, lipid, protein, 

and nucleic acid metabolism, essential for the normal growth 

and development of plants and animals. 

In a study conducted by Martinez et al. 2008 [16], brown rice 

was found to contain 10-11 ppm Fe and 20-25 ppm Zn, while 

milled rice had 2-3 ppm Fe and 16-17 ppm Zn. Adequate Zn 

supply is vital for maintaining a healthy and productive life, 

with an average daily requirement of 7 to 13 mg for adults 

(Department of Health (UK), 1991; Institute of Medicine 

Food and Nutrition Board IMFNB, 2001). Various 

approaches, such as dietary changes to include Zn-rich foods 

and preventive supplementation through Zn-fortified foods, 

are employed to combat human Zn deficiency-related 

problems. Apart from agronomic practices, selecting 

genotypes with high efficiency in accumulating Fe and Zn in 

the endosperm and enhancing their bioavailability from 

existing germplasm collections can be an effective and 

reliable method to provide Fe nutrition benefits to farmers and 

the local population. Identifying donor parents carrying the 

target traits is necessary for breeding staple food crops with 

higher Fe and Zn content. 

The main objective of our study was to evaluate the 

performance of high-yielding rice varieties with enhanced 

grain Fe/Zn content across different environments in 

Chhattisgarh. We aimed to assess genotype by environment 

(GXE) interactions for agronomic and micronutrient traits and 

identify stable varieties with high yield and grain Zn content 

that consistently perform well across diverse environments. 

For achieving these objectives, we aimed to facilitate the 

selection of high-performing rice varieties that exhibit broad 

adaptability, high-yielding and Zn-rich rice varieties with 

improved nutritional value. 

2. Materials and Methods 

The experiment was carried out under three location i.e. 

Raipur, Bilaspur and Bhatapara of Chhattisgarh with 22 grain 

Fe/Zn rich rice varieties along with yield and micronutrient 

check (IR-64 & Kalanamak) during kharif 2019 under MLT 

conducted by department of PMBB, IGKV Raipur, 

Chhattisgarh. The experiment was conducted in Randomized 

Block Design (RBD) with three replications having a plot size 

of 10 m2 in each replication each environment. Standard 

agronomic practices and appropriate control measures for 

weeds, insect pests and diseases were followed. Fertilizer was 

applied at the recommended dose of 120:80:60 (N: P: K) at 

each experimental location. Yield data was recorded at 

physiological maturity and plot data harvested was converted 

to kg/ha using the plot size as factor. For the analysis of grain 

Fe/Zn content, 100 g of paddy samples was processed to rice 

by using Zaccaria rice dehusker. Around 50 g polished sample 

was washed and cleaned with autoclaved distilled water and 

each sample was analyzed in duplicate using X-ray 

fluorescence spectrometer (XRF), Oxford X-Supreme 8000 at 

IRRI, Hyderabad 

 
Table 1: Details of 22 Fe/Zn rich rice genotypes along with yield 

and micronutrient check 
 
 

G. 

No. 
Name of Genotypes G. No. 

Name of 

Genotypes 

G1 R-56 G12 R-RHZ-LI-23 

G2 R-RHP-MI-30 G13 MI-127 

G3 R-RHZ-IB-80 G14 
IR-64 (Yield 

check) 

G4 CGZR-1 G15 IET-26383 

G5 
Kalanamak 

(Micronutrients check) 
G16 CGZR-2 

G6 IET-24780 G17 R-RHZ-IH-82 

G7 R-RHZ-SM-14 G18 DRR Dhan-49 

G8 MI-156 G19 Chandrahasini 

G9 Samba Mahsuri G20 R-RHZ-MI-93 

G10 ZincoRice MS G21 R-RHZ-SD-94 

G11 DRR Dhan-45 G22 CR Dhan-311 

 
Table 2: Pooled analysis of variance over different environments for 

different traits in rice varieties (Eberhart and Russell, 1966 model) 
 

S. 

N. 
Source d.f 

Mean same square (MSS) 

GY 

(kg/h) 

Fe 

(ppm) 

Zn 

(ppm) 

1 Replication 6 835409 3.56 6.251 

2 Genotypes 21 108975** 2.277** 29.02** 

3 ENV+ GXE 44 104671* 9.783** 1.696** 

4 ENV(linear) 1 667101* 344.8** 34.20** 

5 G X E(linear) 21 187513* 0.071* 1.794* 

6 POOLED DEV 22 33.67 3.827** 0.124* 

7 ERROR(pooled) 126 306290 1.116 1.979 

*, **Significant at 5% and 1% respectively 

 

2.1 Statistical analysis 

The data obtained from the experiment was analyzed using R 

Studio software (R Core Team 2012) and Plant Breeding 

Tools software (Version 1.3, http://bbi.irri.org/products). To 

assess genotype by environment interaction (GEI), a GGE bi-

plot was constructed using R software (R Core Team 2012) 

and Plant Breeding Tools. The bi-plot graph depicted the 

relationship between yield means and the scores of the first 

principal component of interaction (IPCA1). 
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Furthermore, the data were analyzed to determine the 

discriminativeness versus representativeness ranking of 

environments, as well as the ranking of genotypes relative to 

the ideal environment. Additionally, the ranking of 

environments based on the ideal genotype was performed. To 

identify mega-environments and winning genotypes within 

the given set of environments, the "which-won-where" option 

was utilized. These analyses provided valuable insights into 

the performance of rice genotypes across different 

environments, enabling the identification of winning 

genotypes and the characterization of mega-environments. 

The use of these analytical tools facilitated a comprehensive 

understanding of genotype-environment interactions, aiding in 

the selection of high-performing rice varieties with broad 

adaptability and stability across diverse environments. 

 

3. Results and Discussion 

The presence of GEI was clearly demonstrated by AMMI 

model and the interaction was portioned among the first two 

interaction principal component axis (IPCA), while the 

cumulative variance was 100% for PCAI and PCAII thereby, 

demonstrating that genotypes may be selected for adaptation 

to specific environments. These results are in harmony with 

the findings of Aina et al., (2009) [3] and XuFei-fei et al., 

(2014) [29] in G x E interactions effects. The environmental 

variance was also found to be significant which indicates that 

the environments under study were different from each other. 

The model was additive and the results of AMMI analysis 

were represented in the form of graphs called bi-plots (Gauch 

and Zobel, 1996). Further Gauch (1988) [9] recommended that 

the most accurate model for AMMI can be predicted by using 

first two principal component analysis. Admassu et al., (2008) 
[1], in accordance with Zobel et al., (1988), proposed that two 

interaction principal component axes for the AMMI model 

were sufficient for a predictive model. Thus, the interaction of 

22 rice genotypes with three environments was predicted by 

the first two components of genotypes and environments 

(Sivapalan et al., 2000) [24]. 

Stable genotypes were identified by graphical representation 

(GGE bi-plot) which uses genotype and GxE components and 

identifies GxE interaction pattern of multi-environment data 

and clearly shows which variety performs best in which 

environment (Lakew et al., 2014) [15]. Vijay kumar et al., 

(2001) [28] detailed that these bi-plots help in visual 

interpretation of GE patterns and identify genotypes or 

environment that exhibit low, medium or high interaction 

effects.  

 

3.1 Combined GGE bi-plot analysis of genotype 

It is environment view of GGE bi-plot for yield, zinc and iron. 

The bi-pot explained 100% total variation of environment 

centered G x E. the cosine of the angle between the vectors of 

two environment approximate the correlation between them. 

All the environment combination (Fig. 1) viz. E1, E2 and E1, 

E3 and E2 E3 were positively correlated this exhibit weak 

GXE interaction. The distance between two environments 

measures their dissimilarity in discriminating the genotype. 

Thus the three environments fell in to two apparent groups. 

E1 and E3 formed one group and E2 formed another group. 

The close association between environment revealed that the 

same set of information could be generated from few test 

environment hence it may potentially reduced the testing cost 

and any one of the location could be dropped. This will help 

in optimum allocation of limited resources during multi-

location trials. The concentric circle which are proportional to 

representative environment and is a measure of discriminating 

ability of environment. Hence E1 and E2 are the most 

discriminating and E3 is least discriminating. Least/Non 

discriminating environment provide little information on 

genotype hence cannot be used as test environment. 

 

 
 

Fig 1: Ranking of environments based on discriminating ability and 

representatives 

 

3.2 Identification of stable genotypes with highest mean 

performance 

In GGE bi-plot the complex GEI are partitioned in different 

principal components (PCs) and the data obtained are 

presented graphically against PCs to depict the GGE bi-plot 

abridgment mean performance and stability of different 

genotypes. The stability of genotype is analyzed by the 

absolute length of the projection of a genotype. G18 and G3, 

G12 and G21 (Fig. 2) are very different, whereas, G3 and G6 

are quite similar. The dissimilarity can be due to difference in 

mean yield genotype and/or in interaction with environment. 

G2, G21, G10 and G5 are virtual genotypes that assume 

average value in each environment and average genotype has 

zero contribution to both G and GXE. Genotype located near 

bi-plot origin has little contribution to both G and GXE, and 

genotype with longest vector. G10 and G18 are poorest 

yielder and unstable genotype. The greater the absolute length 

of projection of a genotype, the less stable it is (Jay Laxami 

et. al., 2017). The angel between two genotypes indicates 

similarity in response to environment. An acute angle 

between G3 and G1 and other genotype means that these 

genotypes responded similarly and difference between them 

was proportion in all environments. G12 and G13 and other 

genotype which exhibit obtuse angle exhibit inverse response 

between genotype. Wherever the first genotype performed 

well the other genotype will perform poorly, while angle 

between G13 and G16 indicates that they response to 

environment independently. In the obtuse angle and acute 

angle cases the difference between the genotypes contributed 

more to G than to GXE. In the right angle case the difference 

contributed mostly to GxE. 

https://www.thepharmajournal.com/
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Fig 2: The genotype-vector view of the GGE bi-plot to show similarities among genotypes in individual environment for a. yield, b. Zn and c. Fe 
 

G2, G4, G9 and G10 (Fig. 2.b) are very similar to each other 

and differ to G19. This Dissimilarity is due to G and/or 

interaction with environment G14, G15, G20 and G12 are 

virtual genotypes and has zero contribution to both G and 

GXE. G19 is the poorest yielder and unstable and G2 and G10 

are higher yielder and stable for zinc. Acute angle was 

reported between G10, G9, G4 and G11 shows genotype 

responded similarly and difference between them was 

proportional in all environments. Obtuse angle between G11 

and G1 exhibit inverse relationship between genotype in 

environment. Right angle between G2 and G3 indicate that 

these two genotypes responded independently in all 

environments. 

 G18, G6, G19 and G1 (Fig. 2.c) are similar performance 

genotypes for Iron content, whereas, G2 and G18 are very 

different genotypes across the environment. For iron content 

genotypes G1, G8, G16, G14, G18 and G17 are close to bi-

plot origin and exhibit very little contribution to G+ GXE. 

G18 has longest vector and high iron content in environment 

E1 

 

3.3 Environment evaluation 

Angles between environment vectors in bi-plots indicate their 

relationship as the cosine of the vector angles is indicative of 

their correlation. Acute angle between two environment 

vectors indicates positive correlation while an obtuse angle 

indicates negative correlation and right angle suggests no 

relation. Environments show complex relationship among 

themselves. The ideal environment is denoted by a small 

circle at the center of the concentric rings. 

 

 
 

Fig 3: GGE Bi-plot environment view 

https://www.thepharmajournal.com/
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Environment vector length has the discriminating power, viz. 

longer the vector length more the discriminating ability 

between genotype and small angle between environment 

vector and AEA line make it the best representative 

environment for discriminating the genotype. Here in our 

study (Fig.3) E3 has the shortest vector length and E2 has the 

longest vector length for yield. E2 exhibit minimum angle 

between environment vector and AEA line, hence, it may be 

the best representative environment for discriminating 

genotype for yield. Similarly, for Zn content all the three 

environment had almost equal vector length, but E3 exhibit 

minimum angle with AEA line hence it is most discriminating 

environment for zinc. For iron content E1 had longest 

environment vector length followed by E2 and E3. E1 exhibit 

minimum angel with AEA line compare to E2 and E3 hence it 

is the most discrimination environment for iron content. 

 

 
 

Fig 4: Mean performance and stability of genotype for a. yield, b. Zn and c. Fe 

 

The mean performance and stability of the genotype should 

be evaluated across environments. Ideal genotypes should 

have the highest mean performance and be absolutely stable 

across environments (Yan and Kang 2007) [30]. For this 

purpose Average environmental co-ordinate (AEC) view (Fig. 

3) of the GGE bi-plot is used. The double-arrowed line is the 

Average Environment Co-ordinate (ACE) and shows greater 

variability (less stability) moving in both the directions. An 

ideal genotype is a genotype which lies on the AEA line, 

genotype located closer to the ideal genotype are more stable 

than others. Thus the genotype G15 is highly stable 

performing across all environments consistently followed by 

genotype G14 and G8 for yield. For Zn content, G5 and G10 

exhibit stable performance followed by genotype G2, G9 and 

G18. G15 were the most stable for Fe content followed by 

G14. This meant that "stable" genotypes were only desirable 

if they had high mean performance. The relative contributions 

of stability and high mean seed yield to the identification of 

desirable genotypes in this study were similar to those found 

in other crop stability studies using the ideal genotypes 

procedure of the GGE bi-plot. 

 

3.4 “Which-won-where” and mega environment 

identification 

“Which-won-where” analyses involving GEI, mega-

environment differentiation, specific adaptation of genotypes 

etc. are graphically addressed. The twenty two rice genotype 

tested in three locations generates a bi-plot which is divided 

into hexagon sections (Fig. 5) for yield with genotype G1, G3, 

G13, G12, G18 and G16, for Zn with genotype G2, G1, G6, 

G19, G3 and G11 and for Fe with genotype G4, G18, G3, 

G13, G20 and G2 respectively, at vertices. The equality lines 

divided the bi-plot into six sectors effectively for yield, two 

sectors effectively for Zn and four sectors effectively for Fe. 

Three testing environments were spread within the bi-plot, for 

yield, three environments falls in one sector each and for Zn, 

the entire environment falls in one sector and for Fe, two 

environments fall in one sector and one environment in 

https://www.thepharmajournal.com/
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another section. Testing environment could be partitioned into 

mega-environment (ME). The sectors, which do not have any 

single environment and hence it did not reflect any separate 

ME and could be merged into nearest MEs. Three MEs was 

reported for yield study with G13, G1 and G3 as winning 

genotype respectively. Only one ME with all the three 

environments was reported for Zn with G2, G4 and G11 as 

winning genotype. ME1 with E2 and E3 environments with 

G4 and G2 as winning genotype and ME2 with E1 only have 

G18 as winning genotype. Thus, this study established the 

effectiveness of GGE bi-plot analysis in identifying stable and 

superior genotypes. If a genotype is placed in a sector where 

no environment marker falls then this genotype is considered 

as poorly performing in all the environments. The genotype 

which falls on the vertex of the polygon where an 

environment marker drops such genotype is suggested to 

provide better yield and perform better in that particular 

environment. On the other hand, the genotype linked to the 

polygon vertex where no environment marker drops in the 

sector indicates that such genotype performs poorly across the 

environments. The genotypes falling within the polygon are 

less stable in the environment then the corner genotypes (Yan 

and Tinker, 2007) [30]. Similar findings and interpretation have 

been made by Islam et al., (2014) [4]. Several authors used 

AMMI to evaluate multi-environment experiments to 

distinguish the effects of the genotype and the environment 

and then assess the G x E interaction in a reduced dimensional 

space with minimum error. 

 

 
 

Fig 5: which-won –where view of GGE Bi-plot for a. yield, b. Zn and c. Fe 

 

Similar kind of results was obtained earlier reported by Oikeh 

et al, (2004) [18], Velu et al, (2012) [27], BishawZ and Van 

Gastel in 2009 [7], Suwarto and Nasrullah (2011) [26]. GGE bi-

plots are very useful in selected lines with target 

environments and were utilized in MLT Trials and in 

coordinated variety testing programme. Prasad et al, (2001) 
[20] reported stability and yield performance of mega varieties 

 

4. Conclusions 

Based on the analysis, genotypes G11 and G1 have 

demonstrated potential as donors for high grain yield, while 

genotypes G10 and G18 exhibit promise for zinc content 

improvement, and genotypes G14 and G12 show potential for 

enhancing iron content. Considering the current situation, a 

crossing program between these genotypes holds promise as a 

prospective approach for developing high-yielding varieties 

with enhanced micronutrient content. This approach aligns 

with the increasing demand for such varieties while requiring 

minimal inputs. To validate and confirm the performance of 

these winning genotypes in terms of yield and micronutrient 

content, further testing is necessary. Multi-location and multi-

environmental trials are recommended to evaluate their 

stability and adaptability across diverse growing conditions. 

These trials will provide crucial information to assess the 

suitability and performance of these genotypes in different 

regions, ensuring the development of robust and widely 

adaptable varieties with improved grain yield and desirable 

micronutrient characteristics. 
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