www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(6): 2206-2209 © 2023 TPI www.thepharmajournal.com

Received: 06-03-2023 Accepted: 07-04-2023

Sarfaraj

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

AK Srivastava

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Subhash Chandra Singh

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Om Prakash

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Vishal Chugh

Department of Basic and Social Science, College of Horticulture, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Vikas Kumar

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Dharmendra Kumar Gautam

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Vikki

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Corresponding Author: Sarfaraj

Department of Fruit Science, Banda University of Agriculture & Technology Banda, Uttar Pradesh, India

Investigate the impact of time and growing conditions on the success and growth of soft wood grafting in guava (*Psidium guajava* L.)

Sarfaraj, AK Srivastava, Subhash Chandra Singh, Om Prakash, Vishal Chugh, Vikas Kumar, Dharmendra Kumar Gautam and Vikki

Abstract

The present investigation was conducted in the Department of Fruit Science, College of Horticulture, Banda University of Agriculture & Technology Banda, (Uttar Pradesh) during 2021-22. Study was undertaken to highlight the effect of different time and growing conditions on success and growth rate of softwood grafting in guava (*Psidium guajava* L.) cv. Lalit under the climatic condition of Bundelkhand region of Uttar Pradesh. The experiment was laid out in Factorial Randomized Block Deign with 18 treatments and three replications. Under open field condition, maximum leaf area (cm²) at 30 days (25.11), leaf area (cm²) at 60 days (56.27), average number of leaf at 30 days (5.46), average number of leaf at 60 days (9.30), shoot diameter 5 cm above graft union (cm) at 30 days (0.40), shoot diameter 5 cm above graft union (cm) at 60 days (0.65), shoot diameter 5 cm below graft union (cm) at 30 days (0.44), shoot diameter 5 cm below graft union (cm) at 60 days (12.21), root length (cm) 60 days (19.10), fresh weight of graft shoots (g) at 60 days (19.68), dry weight of graft shoots at 60 days (6.96), fresh weight of graft root at 60 days (13.55), dry weight of graft roots at 60 days (5.21) was recorded as compared to other condition *i.e.* shade house and poly house. Therefore, on the basic of result, open field condition from 15th February found best for highest success growth rate of soft wood grafting in guava.

Keywords: softwood grafting, laid

Introduction

Guava (*Psidium guajava* L.) is a tropical fruit that can withstand well in subtropical climates. Popularly it is known as "apple of the tropics" and "poor man's apple." It is one of India's most common and important fruits, currently ranks fourth in area and production after mango, citrus, banana, and apple. Guava is commercially cultivated in Mexico, Peru, India, South Asian countries, the Hawaiian Islands and Cuba (Kumar *et al.* 2011)^[8]. In India, the best quality guava is produced in Utter Pradesh and the district Prayagraj has a reputation of growing the best quality guava in Utter Pradesh. Its plants are quite hardy, prolific bearer and considered to be nutritionally valuable and referred as highly remunerative crop (Kumar *et al.* 2020)^[7].

Vegetatively propagated guava yields a crop that is true to type and has a short juvenile phase. Several guava propagation methods, including sexual seed (Zamir *et al.* 2003) ^[15] and asexual methods such as softwood grafting, layering, cutting, and budding, have been practiced (Singh, 1985, Chandra *et al.* 2004, Mortan, 1987) ^[13, 5, 10]. Softwood grafting is a quick method of guava propagation. Softwood grafting, which has been practiced successfully in fruit crops such as mango, tamarind, custard apple, cashew, and jack fruit, can also be used in guava. Success of propagation method like softwood grafting depends on several factors such as, time of grafting and compatibility of scion variety. The time of grafting play the major role on which the final survival of grafts depends. Softwood grafting in guava provides an excellent response by increasing graft success and survival percentage of quality grafts with the least possibility of mortality, resulting in better and more uniform orchard establishment (Ram and Pathak, 2006) ^[11].

Materials and Methods

The present experiment was carried out in Fruit Nursery, Department of Fruit Science, College of Horticulture, Banda University of Agriculture and Technology, Banda during 2021-22.

Fruit crop guava (Psidium guajava L.) cv. Lalit was selected for conducting the experiment with different time and growing conditions on success and growth rate of softwood grafting. The different time and growing conditions on success and growth were applied 15th September, 15th October, 15th November, 15th December, 15th January, and 15th February. The experiment was conducted under shade house, poly house and open field conditions. The climate of Bundelkhand region is chiefly by semi-arid/tropical that has dry & warm summer, pleasant monsoon and mildly cold winter. The average annual rainfall of 800-910 mm in this region was recorded out of which more than 80 percent is received from third week of June to first week of September and very little is received during October and up to February month. May is the hottest month and December is the coolest month in this region. The maximum temperature of this region may reach as high as 46-49°C during summer and minimum may fall to 5-7°C during winter. The relative humidity is high from June to October. The treatment combinations *i.e.* T₁C₁-15th September in open field, $T_2C_1=15^{th}$ October in open field, $T_3C_1=15^{th}$ November in open field, $T_4C_1=15^{th}$ December in open field, $T_5C_1=15^{th}$ January in open field, $T_6C_1=15^{th}$ February in open field, $T_1C_{2=}$ 15th September in Shade net house, T₂C₂=15th October in Shade net house, T₃C₂=15th November in Shade net house, T₄C₂=15th December in Shade net house, T₅C₂=15th January in Shade net house, T₆C₂=15th February in Shade net house, T₁C₃₌ 15th September in Poly house, T₂C₃=15th October in Poly house, T₃C₃=15th November in Poly house, T₄C₃=15th December in Poly house, T₅C₃=15th January in Poly house and T₆C₃=15th February in Poly house were tested in Random Block Design in a Factorial with three replication.

Results and Discussion

Leaf area and number of leaves (30 days and 60 days)

It is clear from the experiment that different time and growing conditions had a significant effect (Table-1) on higher leaf area (cm²) at 30 and 60 days (25.11 cm²) and (56.27 cm²), respectively, was observed with C_1 (open field) whereas the minimum leaf area (cm²) at 30 and 60 days (20.06 cm²) and (39.34 cm^2) with C₂ (shade net house) was recorded. For the leaf area (cm²) at 30 and 60 days it was observed significant higher T₆ (27.34 cm²) and (70.98 cm²) where the minimum leaf area (cm²) at 30 and 60 days with T_4 (17.20 cm²) and (41.59 cm²), respectively, interaction effect on leaf area (cm²) at 30 and 60 days was significant higher with T_6C_1 (31.55 cm^2) and (70.98 cm^2) and minimum with T_4C_3 (16.33 cm^2) and (28.35 cm²). Significant maximum number of leaves at 30 and 60 days (5.46) and (9.30) was observed with C_1 (open field) where the minimum (3.68) and (7.86) with C₃ (poly house) was recorded. For the number of leaf at 30 and 60 days it was observed significant maximum with T_6 (5.14) and (9.07) where the minimum with T₄ (4.03) and (7.84), whereas interaction effect on number of leaves at 30 and 60 days recorded maximum with T_6C_1 (6.10) and (9.86) and minimum with $T_4 C_3$ (3.20) and (7.33). Temperature plays an important role in photosynthetic activity of the leaves and optimum temperature increases the rate of photosynthesis and leads to the formation of more food materials that facilitate and improve the growth and development of the graft sprout. Raghavendra *et al.* (2009) in wood apple. Kukshal *et al.* (2017) ^[9] revealed that the wedge grafting in guava had significant effect.

Shoot diameter (30 days and 60 days)

It is clear from the data presented in the Table -1 that significant effect was observed on higher shoot diameter 5 cm above graft union at 30 and 60 days (0.40) and (0.65) with C_1 (open field) where the minimum (0.30) and (0.57) with C₃ (poly house). Significant higher shoot diameter 5 cm above graft union at 30 and 60 days was observed with T_6 (0.47) and (0.68) where the minimum in T₄ (0.31) and (0.56). Interaction effect shoot diameter 5 cm above graft union at 30 and 60 days noted higher with T_6C_1 (0.52) and (0.71) where the minimum with T_4 C_3 (0.30) and (0.51). Maximum Shoot diameter 5 cm above graft at 30 and 60 days (0.44) and (0.67) was observed with C_1 (open field) where the minimum (0.36) and (0.57) with C₃ (poly house) was noticed. For the significant maximum Shoot diameter 5 cm above graft below 30 and 60 days T6 (0.49) and (0.71) where the minimum T_4 (0.33) and (0.54) and interaction effect on shoot diameter 5 cm above graft union after 30 and 60 days recorded with maximum $T_6 C_1$ (0.54) and (0.74) where the minimum with T_4C_3 (0.31) and (0.47). The high relative humidity and slightly inclined temperature operable in poly house condition might have desirable effect to increase in scion diameter under poly house followed by shade house and open field conditions. Similar finding have also been reported by Kumar et al. (2020)^[7]. Scion diameters get enhanced due to higher accumulation of carbohydrate in scion. Islam et al. (2004) also observed same trend with epicotyls grafting in jackfruit.

Root length (30 days and 60 days)

It is clear from the experiment (Table-2) that different time and growing conditions had a significant effect on root length at 30 days and 60 days after grafting. The higher value (12.21 mm) and (19.10 mm) was recorded with C_1 (open field) whereas, the lower reaches value (10.06 mm) and (15.48 mm) with C_3 (poly house) treatment. Significant higher value for root length at 30 days and 60 days after grafting noted with T_6 (13.31) and (20.92) whereas the minimum with $T_4 \ensuremath{\left(9.53\right)}$ and (14.07). Interaction effect shown significant effect and had higher value for root length at 30 days and 60 days after grafting in treatment T_6 (14.43) and (22.93) whereas lower value with T_4 treatment (9.00) and (12.66). For growing conditions, the highest root length was recorded in poly house followed by shade house. However, lowest root length observed under open field conditions as investigated by Deshmukh et al. (2017) of rootstocks rough lemon.

Fresh weight and dry weight (graft shoot 60 days)

Significant maximum value for fresh weight and dry weight of graft shoot 60 days after grafting (19.86) and (6.96) was observed with C₁ (open field) whereas lower reaches value (17.99) and (5.98) C₃ (poly house) was observed. Significant maximum value for fresh weight and dry weight of graft shoot 60 days after grafting noted with treatment T₆ (20.93) and (7.61) where minimum value with T₄ (16.20) and (5.03). In Interaction effect, maximum value for fresh weight and dry weight of graft shoot 60 days after grafting with T_6C_1 (22.03) and (8.13) whereas, minimum value recorded with T_4C_3 (15.70) and (4.66). The maximum fresh weights of shoot were obtained when higher number of leaf present on shoot and is also due to higher rate of photosynthesis as it is favorable for higher accumulation of food Baghel *et al.* (2016) noted in guava.

Fresh weight and dry weight (graft root 60 days)

Significant effect higher value fresh weight and dry weight of graft root 60 days after grafting (13.55) and (5.21) in C₁ (open field) whereas the minimum value (12.20) and (3.97) with C₃ (poly house) was recorded. For the significant higher value fresh weight and dry weight of graft root 60 days after grafting T₆ (14.41) and (5.62) whereas minimum value with T₄ (10.75) and (3.73). Under Interaction effect, higher value

for Fresh weight and dry weight of graft root 60 days after grafting recorded with T_6C_1 (15.10) and (6.10) and minimum value noted with T_4C_3 (10.33) and (3.20). It might be due to the prevalence of favorable atmospheric conditions like temperature and humidity that is favorable for the vegetative growth Visen *et al.* (2010) ^[14] investigated in guava

Conclusion

On the basic of result obtained during the present investigation, different time and growing conditions on success and growth rate of softwood grafting exhibited significantly of guava. Therefore, on the basis of results, it can be concluded and recommended that, for guava propagation, soft wood grafting in guava under agro-climatic conditions of Banda should be carried during mid of February under poly house conditions to achieve maximum grafting success and seedling growth.

 Table 1: Effect of grafting time, growing conditions and their interaction on leaf area, number of leaf, shoot diameter 5 cm above graft union, shoot diameter 5 cm above graft below

Treatments	days	Leaf area 60 days	Number of leaf at 30 days	Number of leaf at 60 days	Shoot diameter 5 cm above graft union 30 days	Shoot diameter 5 cm above graft union 60 days	Shoot diameter 5 cm above graft below 30 days	Shoot diameter 5 cm above graft below 60 days
T1	23.58	59.85	4.67	8.73	0.36	0.64	0.40	0.63
T2	20.50	57.90	4.43	8.51	0.33	0.58	0.38	0.62
T3	18.54	46.14	4.31	8.11	0.32	0.58	0.35	0.58
T 4	17.20	41.59	4.03	7.84	0.31	0.56	0.33	0.54
T5	24.71	61.69	4.87	8.81	0.42	0.65	0.44	0.67
T6	27.34	70.98	5.14	9.07	0.47	0.68	0.49	0.71
SEm±	0.03	0.05	0.02	0.03	0.004	0.005	0.003	0.006
CD at 5%	0.09	0.15	0.07	0.10	0.012	0.014	0.01	0.01
C1	25.11	56.27	5.46	9.30	0.40	0.65	0.44	0.67
C_2	20.76	46.78	4.58	8.37	0.36	0.62	0.39	0.63
C ₃	20.06	39.34	3.68	7.86	0.33	0.57	0.36	0.57
SEm±	0.04	0.07	0.03	0.05	0.006	0.007	0.005	0.009
CD at 5%	0.13	0.22	0.10	0.15	0.017	0.019	0.01	0.02
$T_1 C_1$	27.23	59.85	5.53	9.50	0.41	0.70	0.47	0.70
T ₂ C ₁	23.39	57.90	5.40	9.33	0.34	0.60	0.43	0.70
T ₃ C ₁	20.38	46.14	5.23	8.96	0.33	0.63	0.37	0.63
T4 C1	18.79	41.59	4.80	8.43	0.33	0.60	0.35	0.60
T5 C1	29.33	61.69	5.73	9.73	0.49	0.70	0.51	0.69
T ₆ C ₁	31.55	70.98	6.10	9.86	0.52	0.71	0.54	0.74
T1 C2	21.99	48.05	4.60	8.56	0.34	0.63	0.38	0.61
T2 C2	18.93	43.59	4.50	8.26	0.33	0.58	0.36	0.60
T3 C2	17.31	40.07	4.40	8.03	0.31	0.60	0.34	0.59
T4 C2	16.50	34.47	4.10	7.73	0.31	0.56	0.33	0.56
T5 C2	23.31	52.81	4.83	8.70	0.42	0.63	0.43	0.69
T ₆ C ₂	26.53	61.16	5.06	9.06	0.48	0.70	0.50	0.73
T1 C3	21.51	41.14	3.90	8.23	0.33	0.59	0.37	0.58
$T_2 C_3$	19.17	33.64	3.40	7.93	0.32	0.56	0.35	0.56
T ₃ C ₃	17.94	35.85	3.30	7.36	0.31	0.53	0.33	0.54
T ₄ C ₃	16.33	28.35	3.20	7.33	0.30	0.51	0.31	0.47
T5 C3	21.50	44.48	4.06	8.00	0.36	0.62	0.40	0.63
T ₆ C ₃	23.95	52.60	4.26	8.30	0.41	0.64	0.43	0.66
SEm±	0.08	0.13	5.14	0.09	0.01	0.012	0.008	0.015
CD at 5%	0.23	0.38	0.06	0.26	0.03	0.033	0.02	0.04

Where: C₁=Open field, C₂= Shade net house, C₃=Poly house, T₁= 15th September, T₂=15thOctober, T₃=15thNovember, T₄= 15th December, T₅=15th January, T₆=15th February, T₁C₁= 15th September in open field, T₂C₁=15th October in open field, T₃C₁=15th November in open field, T₆C₁=15th December in open field, T₁C₂=15th September in Shade net house, T₂C₂=15th October in Shade net house, T₃C₂=15th November in Shade net house, T₄C₂=15th December in Shade net house, T₅C₂=15th January in Shade net house, T₁C₃= 15th September in Poly house, T₂C₃=15th October in Poly house, T₃C₃=15th December in Poly house, T₃C₃=15th December in Poly house, T₄C₃=15th December in Poly house, T₃C₃=15th December in Poly house, T₄C₃=15th Poly house, T₄C₃=15th

Freatments	Root length 30 days after grafting	Root length 60 days after grafting	Fresh weight of graft shoot 60 days after grafting	dry weight of graft shoot 60 days after grafting	Fresh weight of graft root 60 days after grafting	dry weight of graft root 60 days
T_1	11.05	18.08	20.01	6.83	13.50	4.82
T_2	10.63	16.01	19.27	6.61	12.62	4.17
T ₃	10.14	15.43	17.17	5.43	11.62	4.00
T_4	9.53	14.07	16.20	5.03	10.75	3.73
T5	12.40	19.53	20.40	7.16	14.14	5.24
T ₆	13.31	20.92	20.93	7.61	14.41	5.62
SEm±	0.61	0.14	0.07	0.03	0.05	0.03
CD at 5%	0.17	0.40	0.21	0.09	0.14	0.11
C1	12.21	19.10	19.86	6.96	13.55	5.21
C_2	11.26	17.44	19.13	6.38	12.77	4.61
C3	10.06	15.48	17.99	5.98	12.20	3.97
SEm±	0.08	0.19	0.1	0.04	0.07	0.05
CD at 5%	0.25	0.57	0.30	0.12	0.20	0.15
$T_1 C_1$	12.03	19.76	21.26	7.36	14.13	5.36
$T_2 C_1$	11.43	18.30	19.96	7.13	13.40	5.03
T3 C1	10.93	17.26	17.83	6.10	12.70	4.73
T4 C1	10.43	15.46	16.63	5.36	11.30	4.33
T5 C1	14.03	20.86	21.46	7.70	14.70	5.70
T ₆ C ₁	14.43	22.93	22.03	8.13	15.10	6.10
$T_1 C_2$	11.10	18.20	20.10	6.76	13.36	4.73
$T_2 C_2$	10.73	16.70	19.33	6.63	12.63	4.16
T3 C2	10.13	15.70	17.36	5.16	11.60	4.03
T4 C2	9.16	14.10	16.26	5.06	10.63	3.66
T ₅ C ₂	12.73	19.63	20.66	7.10	14.10	5.36
T ₆ C ₂	13.70	20.33	21.10	7.60	14.30	5.53
T ₁ C ₃	10.03	16.30	18.66	6.36	13.00	4.36
$T_2 C_3$	9.73	13.03	18.53	6.06	11.83	3.33
T ₃ C ₃	9.36	13.33	16.33	5.03	10.56	3.23
T4 C3	9.00	12.66	15.70	4.66	10.33	3.20
T5 C3	10.43	18.10	19.06	6.70	13.63	4.66
T ₆ C ₃	11.80	19.50	19.66	7.10	13.83	5.03
SEm±	0.15	0.34	0.18	0.07	0.12	0.09
CD at 5%	0.43	0.98	0.52	0.22	0.35	0.27

 Table 2: Effect of grafting time, growing conditions and their interaction on root length, fresh and dry weight of graft shoot, fresh and dry weight of graft root

Where: C₁=Open field, C₂= Shade net house, C₃=Poly house, T₁=15th September, T₂=15thOctober, T₃=15thNovember, T₄=15th December, T₅=15th January, T₆=15th February, T₁C₁= 15th September in open field, T₂C₁=15th October in open field, T₃C₁=15th November in open field, T₆C₁=15th January in open field, T₆C₁=15th Pebruary in open field, T₁C₂= 15th September in Shade net house, T₂C₂=15th October in Shade net house, T₃C₂=15th November in Shade net house, T₄C₂=15th December in Shade net house, T₃C₂=15th January in Shade net house, T₁C₃= 15th September in Poly house, T₂C₃=15th October in Poly house, T₃C₃=15th December in Poly house, T₃C₃=15th December in Poly house, T₄C₃=15th December in Poly house, T₃C₃=15th December in Poly house, T₄C₃=15th Pebruary in Poly house, T₄C₄=15th Pebruary i

References

- Anushma PL, Swamy GSK, Gangadhara K. Effect of colord shade net on soft wood grafting success in jamun (*Syzigium cuminii* Skeels). Plant Archives. 2014;14(1):293-295.
- 2. Alam MA, Islam MS, Uddin MZ, Barman JC, Quamruzzaman KM. Effect of age of seedling and variety of scion in stone grafting of mango. Int. J Sustain Crop Prod. 2007;1(2):27-32.
- Banyal Kumar A, Guleria T, Kumar S, Thakur A, Pathania S. Standardization of wedge grafting technique in guava (*Psidium guajava* L.) under subtropical conditions of Himachal Pradesh. International Journal of Bio-Resource & Stress Management. 2021;13(3):252-260.
- 4. Beer K, Yadav AL, Verma AL. Effect of grafting time and environment on the graft success of guava (*Psidium guajava* L.) under wedge grafting. Trends in biosciences. 2013;6(6):770-772.
- 5. Chandra R, Mishra M, Bajpai A, Kishun R, Mishra AK, Singh G, *et al.* Biotechnological interventions for improvement of guava (*Psidium guajava* L.) Proceeding

of 1st International Guava Symposium. CISH, Lucknow. India. 2004. p. 19-25.

- Deshmukh NA, Patel RK, Krishnappa R, Verma BC, Rymbai H, Assumi SR, *et al.* Influence of rootstock age and propagation methods on scion physiology and root morphology of Khasi mandarin (*Citrus reticulata*). Ind. J Agri. Sci. 2017;87:203-209.
- Kumar A, Chahal D, Malik A, Devi S, Bishnoi O. Effect of rootstock thickness on wedge grafting in guava (*Psidium guajava* L.) under different growing conditions. The Pharma Innovation Journal. 2020;9(12):162-169.
- Kumar B, Mistry NC, Singhm B, Gandhi CP. Indian Horticulture Database, National Horticulture Board (NHB), Gurgaon. Department of Agriculture and Cooperation, Govt. of India. 2011. p. 76-83.
- 9. Kukshal R, Rajput V, Bhatia SK. Studies on wedge grafting in guava (*Psidium guajava* L.) under open field conditions trends in biosciences. 2017;10(40:)8273-8277.
- Mortan JF. Fruits of warm climates. Julis F. Mortan Publ., Miami, Florida, USA.356-363. 1987.
- 11. Ram RA, Pathak RK. Soft wood grafting open new avenues in cultivation fruit crops. Indian J Hort.

2006;63(4):10-11.

- Rghavendra VN, Angadi SG, Mokashi AN, Allolli TB, Venugopal CK, Mummigatti UV. Studies on softwood grafting in wood apple (*Feronia limonia* L.). Acta Hort. 2009, 890.
- 13. Singh R. The fruits. National Book Trust. New Delhi. 1985. p. 86-90.
- 14. Visen A, Singh JN, Singh SP. Standardization of wedge grafting in guava under north Indian plains. Indian J Hort. 2010;67:111-113.
- 15. Zamir R, Khattak GSS, Mohammad T, Ali N. *In vitro* mutagenesis in guava (*Psidium guajava* L.). Pak. J Bot. 2003;355:825-828.