www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(7): 2584-2588 © 2023 TPI www.thepharmajournal.com Received: 29-04-2023 Accepted: 01-06-2023

Preeti Toppo

Department of Fruit Science, College of Agriculture, I.G.K.V., Raipur, Chhattisgarh, India

GL Sharma

Department of Fruit Science, College of Agriculture, I.G.K.V., Raipur, Chhattisgarh, India

Khushboo Tandon

Department of Fruit Science, College of Agriculture, I.G.K.V., Raipur, Chhattisgarh, India

Satish Xaxa

Department of Fruit Science, College of Agriculture, I.G.K.V., Raipur, Chhattisgarh, India

Corresponding Author: Preeti Toppo Department of Fruit Science, College of Agriculture, I.G.K.V., Raipur, Chhattisgarh, India

Field performance evaluation of *in-vitro* raised strawberry cv. Nabila under poly tunnel

Preeti Toppo, GL Sharma, Khushboo Tandon and Satish Xaxa

Abstract

The present investigation entitled" Field performance evaluation of *in-vitro* raised strawberry cv. Nabila under poly tunnel "was conducted at the "Research Farm of Centre of Excellence on Protected Cultivation and Precision Farming under protected condition, located at College of Agriculture, IGKV, Raipur (C.G.)" during the year 2018-19 and 2019-20 under experiments with 3 replications and is laid out in Randomized Block Design. The effects of different combinations of growth regulators was non significantly affected the plant height at 30-45 DAT and 120 DAT, while it was significantly affected at 0-15, 15-30, 45-60 and 90 DAT. Maximum plant height was record with MS + BAP (1.00 mg/l) + NAA (0.1 mg/l)) at 0-15 DAT, MS + Kinetin (1.00 mg/l) + NAA (0.50 mg/l) at 15-30 DAT, MS + Kinetin (1.00 mg/l) + NAA (0.50 mg/l)) at 45-60 DAT, MS + BAP (1.00 mg/l) + NAA (0.10 mg/l) at 90 DAT and MS + Kinetin (1.00 mg/l) + NAA (0.50 mg/l) at 120 DAT. In E-W direction maximum plant spread was recorded with MS + BAP (0.5 mg/l) + NAA (0.1 mg/l) at 15 DAT, MS + BAP (1.0 mg/l) + NAA (0.5 mg/l) at 30 DAT, MS +BAP (0.5 mg/l) + NAA (0.5 mg/l) at 45 DAT, MS + BAP (1.0 mg/l) + NAA (0.1 mg/l) at 60 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 75 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 90 DAT and MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) during both the years of study (2018-19 and 2019-20). In N-S direction maximum plant spread was recorded with MS + Kinetin (1.0 mg/l) + NAA (0.5 mg/l) at 15 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.5 mg/l) at 30 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 45 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 60 DAT, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 75 Days after transplanting, MS + Kinetin (1.0 mg/l) + NAA (0.1 mg/l) at 90 Days after transplanting and MS + BAP (1.0 mg/l) + NAA (0.1 mg/l) at 120 Days after transplanting during both the years of study (2018-19 and 2019-20). The work recommended that use of growth regulators along with MS medium can enhance the quality and yield performance of strawberry under in-vitro conditions.

Keywords: GA3, NAA, BAP, IBA, kinetin, activated charcoal

Introduction

The botanical name of cultivated strawberry $Fragaria \times ananassa$ Duch. is octoploid in nature (2n=8x=56). In the 17th century it has been derived from North American species, *Fragaria chiloensis* and *Fragaria virginiana* in France. It belongs to the family Rosaceae. It is one of the important fruit crops whose cultivation is having ample scope near the fruit preservation factories as well as big cities.

In recent years, strawberry is being cultivated successfully in our country in plains of Maharashtra around Pune, Nasik and Sangali towns. It has been widely adopted as the small fruits having 98% edible portion.

Now a days Strawberry is being grown throughout Europe, in every States of the South America and United States in Canada. There is a wide range of climatic conditions within these regions and the wide adaptation capability of the strawberry plant permit it's harvesting and marketing over maximum part of the year.

Strawberry is a delicious fruit can be taken fresh as table fruit or in processed form. It is good source of vitamin C and Iron. On account of rich aroma and pectin it makes excellent icecream, jam and jelly. It is a very soft and a highly perishable fruit, due to which often kept in frozen condition in Western countries. Fruit shape differs depending upon the variety. It may be conical, round and long to conical, conical with constricted base and cylindrical ground. The strawberry fruit contains 89-90% moisture, 0.7-9.2 g protein, 8.4-9.2 g carbohydrate, 0.5 g fat, 59-120 mg vitamins C per 100 g of fresh weight of fruit. The fruit of strawberry is good for those people suffering from anemia biliousness and indigestion.

Material and Methods

The present investigation entitled, "Field performance evaluation of in-vitro raised strawberry cv. Nabila under poly tunnel" was conducted during the year 2018-19 and 2019-20 and Centre of Excellence on Protected Cultivation and Precision farming under poly tunnel, IGKV, Raipur (C.G.). The planting material was healthy runners of Strawberry plants cv. Nabila procured from Commercial Tissue Culture Laboratory Department of PMBB, College of Agriculture, IGKV, Raipur (C.G.), College of Agriculture, IGKV, Raipur (C.G.).Nabila is an important variety of strawberry, what is performing very good under agro climatic regions of Chhattisgarh plain. This variety requires low chilling hours to get fruiting. Therefore Nabila cultivar was selected for present experiment Treatment T₁ MS + IBA (0.50mg/1), T₂ MS + IBA (1.00 mg/1), T₃ MS + NAA (0.50mg/1), T₄ MS+ NAA (1.00 mg/1), T₅ MS + IBA (0.50 mg/1) +Activated Charcol (200 mg/1), T₆ M S + IBA (1.00 mg/1) + Activated Charcol (200 mg/1), T₇ MS+ NAA (0.50 mg/1) + Activated Charcol (200 mg/1), T₈ MS+ NAA (1.00 mg/1) + Activated Charcol (200 mg/1).

Plant height (cm)

The average height and spread of plant was measured at 30, 45, 60, 90 and 120 days after planting with a measuring scale from the crown level to apex of primary leaves and results were expressed in centimeters.

Results and Discussion Plant height (cm)

For sustaining the production in higher level, growth regulators play a vital role as signal molecules and regulate the cellular processes to determine the formation of the root, stem, leaf, and flower.

A perusal of data in indicated the significant effects of other combinations of growth regulators on plant height at all the days and years of study except in 30-45 DAT (2018-19 and 2019-20), 90 DAT (2019-20) and 120 DAT (2018-19, 2019-20 and pooled) which were non-significant.

The maximum plant height was recorded as 2.84 cm during 2018-19, 2.71 cm during 2019-20 and 2.77 cm in pooled data between 0-15 DAT in treatment T_5 and minimum was registered as 2.53 cm, 2.36 cm and 2.45 cm between 0-15 DAT in Treatment T_4 during 2018-19, 2019-20 and in pooled data respectively.

During 15-30 DAT, maximum plant height was recorded as 5.54 cm, 5.29 cm and 5.41 cm in treatment T_7 and minimum plant height registered as 4.91 cm, 4.8 cm and 4.75 cm in treatment T_2 during 2018-19, 2019-20 and in pooled data respectively.

The maximum plant height was recorded 8.92 cm and 8.49 cm at 30-45 DAT in treatment T_4 and minimum was registered as 8.39 and 7.85 cm during 30-45 DAT in treatment T_5 in both the years (2018-19 & 2019-20), respectively but was non-significantly affected. In contrast, the pooled mean data of plant height at 30-45 DAT was significantly affected by different combinations of medium and growth regulators. The pooled mean data of plant height was registered maximum (8.70 cm) in treatment T_4 , while minimum plant height (8.12 cm) was recorded in treatment T_5 .

The maximum plant height was recorded as 13.52 and 13.06 cm at 45-60 DAT in treatment T_8 and minimum plant height registered as 11.84 and 11.13 cm at 45-60 DAT in treatment T_1 , in both the years (2018-19 & 2019 20) respectively. The pooled mean data of plant height at 45-60 DAT was also

significantly affected by different combinations of medium and growth regulators. Similarly, the pooled mean data of plant height was registered maximum (13.29 cm) in treatment T_8 while minimum plant height was recorded in treatment T_1 as 11.49 cm. However, the treatment T_2 , T_4 and T_5 were found to be at par with rest of the treatments.

The maximum plant height was recorded as 20.70 cm during 2018-19, 18.96 cm during 2019-20 and 19.83 cm in pooled data at 90 DAT in treatment T_5 whereas, the minimum plant height was registered as 18.26 cm, 17.05 cm and 17.60 cm at 90 DAT in treatment T_3 during 2018-19, 2019-20 and in pooled data respectively.

At1 20 DAT, maximum plant height was recorded as 24.76 cm 23. 18 cm and 23.92 cm in treatment T_3 and minimum plant height registered as 24.21 cm 22.39 cm and 23.2 cm in treatment T_6 during 2018-19, 2019-20 and in pooled data respectively. However, the treatment T_2 and T_5 were found to be at par with rest of the treatments. Results revealed that the application of BAP and NAA was found to be most effective for enhancing the plant height of cabbage than application of Kinetin along with NAA. Above findings are in the results of Hatwar *et al.* (2003) ^[1] and Sarma *et al.* (2005) ^[2].

The role of cytokinin and NAA is well known, which promotes cell elongation and cell multiplication and thereby increasing plant height due to increases in length of internodes (Kotecha *et al.* 2016)^[3]. The application of growth regulators in balance and integrated manner along with the medium fulfill the requirement of crops, which might be responsible for better growth and development of the strawberry than that of omission.

Plant spread in (cm) (East-West & North-South)

The data summarized in indicated that the effects of different combinations of growth regulators was significantly affected the plant spread in E-W direction (E-W) and direction (N-S) at 15, 30, 45, 60, 75, 90 and 120 DAT during both the years of study (2018-19 & 2019-20).

The maximum plant spread in East-West direction was recorded as 6.27 and 5.79 cm at 15 DAT in treatment T_4 , and minimum plant spread in E-W direction registered as 4.77 and 4.29 cm at 15 DAT in treatment T_1 , in both the years (2018-19 & 2019-20), respectively. The pooled mean data of plant spread in E-W direction at 15 DAT was recorded significantly maximum (6.03 cm) in treatment T_4 Whereas, the maximum plant spread in North–South direction was recorded as 8.50 and 8.07 cm at 15 DAT in treatment T_7 and minimum plant spread in in N-S direction registered as 6.80 and 6.54 cm at 15 DAT in treatment T_4 , in both the years (2018-19 & 2019-20), respectively. The pooled mean data of plant spread in in N-S direction registered as 6.80 and 6.54 cm at 15 DAT in treatment T_4 , in both the years (2018-19 & 2019-20), respectively. The pooled mean data of plant spread in in N-S direction at 15DAT was recorded significantly maximum (8.29 cm) in treatment T_7 .

Among the eight different treatment combinations the maximum plant spread was recorded as 10.23 and 9.76 cm at 30 DAT by treatment T_6 in E-W direction and 12.20 and 11.36 cm by treatment T_7 in N-S direction in 2018-19 and 2019-20 respectively. Treatment T_2 in E-W direction and T_1 in N-S direction registered lowest plant spread of 8.33and 7.77 cm and 10.20 and 9.73 cm 2018-19 and 2019-20 respectively. The pooled mean data of plant spread in E-W direction at 30 DAT was recorded significantly maximum (10.00 cm) in treatment T_6 in E-W direction and 11.78 cm in treatment T_7 in N-S direction Plant spread was found maximum at the treatment T_3 (12.17 cm in 2018-19,11.63 cm in 2019-20) in E-W direction and treatment T_8 (13.93 cm in 2018-19, 12.99 cm in 2019-20) in N-S direction at 45 DAT and minimum at the

treatment T_1 (11.17 cm in 2018-19,10.36 cm in 2019-20) in E-W direction and treatment T_2 (12.17 cm in 2018-19, 11.78 cm in 2019-20) in N-S direction at 45 DAT. The pooled mean data of plant spread in EW direction at 45 DAT was recorded significantly maximum (11.90 cm) in treatment T_3 in E-W direction and 13.46 cm in sample T_8 in N-S direction.

The maximum plant spread was recorded as 15.93 cm at 60 DAT in treatment $T_515.93$ and 14.98 cmin 2018-19 and 2019-20 respectively in E-W direction and treatment T_8 18.67 and 17.39 cm in 2018-19 and 2019-20 respectively in N-S direction and minimum plant spread registered as 13.47 cm in 2018-19, 12.23 cm in 2019-20 and 14.37 cm in 2018-19, 13.27 cm in 2019-20 at 60 DAT in treatment T_1 in East -West and North-South direction respectively. Pooled mean data of

plant spread in E-W direction at 60 DAT was recorded significantly maximum (15.46 cm) in treatment T_5 in E-W direction and 17.94 cm in treatment T_8 in N-S direction.

The maximum plant spread in East-West and North-south direction was recorded as 18.83 cm in 2018-19, 18.23 cm in 2019-20 and 22.50 cm in 2018-19, 21.49 cm in 2019-20. Respectively at 75 DAT in treatment T_8 , and minimum plant spread registered as 17.03 cm in 2018-19, 15.77 cm in 2019-20 and 15.80 cm in 2018-19, 14.71 cm in 2019-20 in E-W and N-S directions respectively at 75 DAT in treatment T_1 . The pooled mean data of plant spread in East -West and North-South direction at 75 DAT was significantly maximum (18.53 cm and 21.99 cm) in treatment T_8 .

Table 1: Effect of various treatments on Plant spread (E-W) at 15, 30 and 45 DAT of strawberry cv. Nabila

S. No.	Truester	Plant Spre	ad (EW) afte	r 15 DAT	Plant Spre	Plant Spread (EW) after 30 DAT			Plant Spread (EW) after 45 DAT		
	Treatment	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	
1	T_1	4.77e	4.29e	4.53e	8.37d	8.12cd	8.24de	11.17c	10.36d	10.76d	
2	T_2	5.1de	4.75d	4.93d	8.33d	7.77d	8.05e	11.27c	10.75bcd	11.01cd	
3	T3	5.47cd	5.3bc	5.38c	9.73abc	9.4a	9.57b	12.17a	11.63a	11.9a	
4	T4	6.27a	5.79a	6.03a	9.6bc	8.64b	9.12c	12.17a	11.33abc	11.75a	
5	T5	5.8abc	5.5ab	5.65bc	8.63d	8.31bc	8.47d	11.6abc	10.76bcd	11.18cd	
6	T ₆	5.73bc	5.44b	5.59bc	10.23a	9.76a	10a	11.33bc	10.56cd	10.95cd	
7	T ₇	5.63c	5.14c	5.39c	9.37c	8.78b	9.07c	11.7abc	10.81bcd	11.26bc	
8	T_8	6.13ab	5.52ab	5.83ab	10ab	9.4a	9.7ab	11.97ab	11.49ab	11.73ab	
	Gen. Mean	5.61	5.22	5.41	9.28	8.77	9.03	11.67	10.96	11.32	
	C.V.	4.88	3.16	4.32	3.86	3.21	3.6	3.4	4.07	3.61	
	F Prob.	0	0	0	0	0	0	0.04	0.03	0	
	S.E.M.	0.16	0.1	0.1	0.21	0.16	0.13	0.23	0.26	0.17	
	C.D. 5%	0.48	0.29	0.28	0.63	0.49	0.38	0.69	0.78	0.48	
	C.D. 1%	0.67	0.4	0.37	0.87	0.69	0.52	0.96	1.09	0.65	

Table 2: Effect of various treatments on Plant spread (E-W) at 60 and 75 DAT of strawberry cv. Nabila

S N	Treatment	Plant S	pread (EW) after 6	50 DAT	Plant Spread (EW) after 75 DAT			
S. N.		2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	
1	T_1	13.47c	12.23c	12.85e	17.03d	15.77d	16.57c	
2	T_2	14.7b	14.26ab	14.48cd	17.37cd	16.16cd	16.60c	
3	T 3	15.33ab	14.18ab	14.76bc	18.3abc	17.04bc	17.67b	
4	T_4	15.57a	14.63a	15.1ab	18.27abc	17.5ab	17.88ab	
5	T5	15.93a	14.98a	15.46a	18.7ab	18.06a	18.38a	
6	T_6	14.7b	13.64b	14.17d	17.6bcd	15.98d	16.79c	
7	T ₇	15.67a	14.59a	15.13ab	18.4abc	17.7ab	18.05ab	
8	T_8	15.3ab	14.24ab	14.77bc	18.83a	18.23a	18.53a	
	Gen. Mean	15.08	14.09	14.59	18.06	17.06	17.56	
	C.V.	2.93	3.66	3.31	3.59	3.41	3.4	
	F Prob.	0	0	0	0.04	0	0	
	S.E.M.	0.26	0.3	0.2	0.37	0.34	0.24	
	C.D. 5%	0.77	0.9	0.57	1.14	1.02	0.7	
	C.D. 1%	1.07	1.25	0.77	1.58	1.42	0.95	

Table 3: Effect of various treatments on Plant spread (E-W) at 90 and 120 DAT of strawberry cv. Nabila

S. No.	Treatment	Plant S	oread (EW) after 9	90 DAT	Plant Spread (EW) after 120 DAT			
		2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	
1	T_1	19.47e	18.8d	19.14f	21.73f	20.49e	21.11g	
2	T_2	20.17de	19.2d	19.68ef	24.17e	23.15d	23.66f	
3	T ₃	20.93cd	19.68cd	20.31de	26.03e	24.24cd	25.14e	
4	T_4	21.33cd	20.65bc	20.99cd	28d	25.2c	26.6d	
5	T 5	21.67c	20.76bc	21.21c	29.77cd	27.8b	28.78c	
6	T_6	21.93bc	21.14b	21.54c	31.17bc	29.73a	30.45b	
7	T ₇	23.13ab	21.95ab	22.54b	32.4b	30.07a	31.23b	
8	T_8	24.27a	22.62a	23.44a	34.53a	31.08a	32.81a	
	Gen. Mean	21.61	20.6	21.11	28.47	26.47	27.47	
	C.V.	3.47	3.62	3.5	3.85	3.02	3.39	

F Prob.	0	0	0	0	0	0
S.E.M.	0.43	0.43	0.3	0.63	0.46	0.38
C.D. 5%	1.31	1.31	0.87	1.92	1.4	1.1
C.D. 1%	1.82	1.81	1.17	2.66	1.94	1.48

Table 4: Effect of various treatments on Plant spread (N-S) at 15, 30 and 45 DAT of strawberry cv. Nabila

S. No.	Treatment	Plant Spread (NS) after 15 DAT			Plant Spread (NS) after 30 DAT			Plant Spread (NS) after 45 DAT		
5. INO.		2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	2018-19	2019-20	Pooled
1	T_1	7.27bc	6.77cd	7.02d	10.2e	9.73d	9.97f	12.6bc	11.88cd	12.24c
2	T_2	7.17bc	6.84cd	7d	10.5de	9.9d	10.2ef	12.17c	11.78d	11.97c
3	T_3	6.97c	6.49d	6.73d	11.07cd	10.14cd	10.6de	13.2ab	12.75ab	12.98b
4	T_4	6.8c	6.54d	6.67d	11.27bc	10.42bcd	10.84cd	13.37ab	12.89ab	13.13ab
5	T ₅	8.13a	7.67ab	7.9b	11.97a	11.36a	11.66ab	13.77a	13.33a	13.55a
6	T_6	7.6b	7.24bc	7.42c	11.73ab	11.15ab	11.44ab	13.8a	12.48bcd	13.14ab
7	T7	8.5a	8.07a	8.29a	12.2a	11.36a	11.78a	13.57a	12.63abc	13.1ab
8	T_8	8.23a	7.82a	8.03ab	11.73ab	10.75abc	11.24bc	13.93a	12.99ab	13.46ab
	Gen. Mean	7.58	7.18	7.38	11.33	10.6	10.97	13.3	12.59	12.94
	C.V.	3.56	4.44	4.08	3.2	4.21	3.67	3.51	3.43	3.38
	F Prob.	0	0	0	0	0	0	0	0.01	0
	S.E.M.	0.16	0.18	0.12	0.21	0.26	0.16	0.27	0.25	0.18
	C.D. 5%	0.47	0.56	0.36	0.64	0.78	0.47	0.82	0.76	0.52
	C.D. 1%	0.66	0.78	0.48	0.88	1.09	0.64	1.14	1.05	0.7

Table 5: Effect of various treatments on Plant spread (N-S) at 60 and 75 DAT of strawberry cv. Nabila

S. No.	Treatments	Plant S	oread (NS) after 60	DAT	Plant Spread (NS) after 75 DAT			
5. INO.		2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	
1	T_1	14.37d	13.27e	13.82e	15.8f	14.71f	15.25e	
2	T_2	15.13cd	14.47d	14.8d	17.57e	16.3e	16.93d	
3	T ₃	15.13cd	14.47d	14.8d	18.03e	16.45e	17.24d	
4	T_4	16.23bc	15.11cd	15.67c	18.8de	17.9d	18.35c	
5	T ₅	17.07b	16.09bc	16.58b	19.67cd	18.31cd	18.99c	
6	T_6	18.5a	17.02ab	17.85a	20.63bc	19.85b	20.24b	
7	T_7	18.63a	17.14ab	17.89a	20.93b	19.17bc	20.05b	
8	T_8	18.67a	17.39a	17.94a	22.5a	21.49a	21.99a	
	Gen. Mean	16.72	15.62	16.17	19.24	18.02	18.63	
	C.V.	4.63	3.94	4.22	3.75	3.66	3.62	
	F Prob.	0	0	0	0	0	0	
	S.E.M.	0.45	0.36	0.28	0.42	0.38	0.28	
	C.D. 5%	1.36	1.08	0.8	1.27	1.15	0.79	
	C.D. 1%	1.88	1.5	1.08	1.76	1.6	1.07	

Table 6: Effect of various treatments on Plant spread (N-S) at 90 and 120 DAT of strawberry cv. Nabila

S. No.	Treatments	Plant Sp	oread (NS) after 90	DAT	Plant Spread (NS) after 120 DAT			
5. INO.		2018-19	2019-20	Pooled	2018-19	2019-20	Pooled	
1	T_1	19.07f	17.54f	18.3f	23.3e	21.69f	22.5g	
2	T_2	20.43e	18.8e	19.62e	24.5e	23.72e	24.11f	
3	T ₃	21de	19.57de	20.29e	26.73d	25.72d	26.23e	
4	T_4	21.93d	20.35d	21.14d	31.27b	29.27ab	30.27bc	
5	T5	24.1c	22.94c	23.52c	33.03a	30.85a	31.94a	
6	T_6	24.67c	23.68bc	24.17c	28.6c	26.54cd	27.57d	
7	T_7	26.03b	24.47ab	25.25b	31.9ab	30.08a	30.99ab	
8	T_8	27.53a	25.47a	26.5a	31.2b	28.08bc	29.64c	
	Gen. Mean	23.1	21.6	22.35	28.82	26.99	27.91	
	C.V.	3.13	3.14	3.13	3.07	3.68	3.26	
	F Prob.	0	0	0	0	0	0	
	S.E.M.	0.42	0.39	0.29	0.51	0.57	0.37	
	C.D. 5%	1.26	1.19	0.82	1.55	1.74	1.07	
	C.D. 1%	1.76	1.65	1.11	2.15	2.42	1.44	

References

- 1. Hatwar GP, Godane SU, Urkude SM, Gahukar OV. Effect of micronutrients on growth and yield of chilli. J Soils and Crops. 2003;13(1):123-25.
- 2. Sarma P, Gaswami RK, Delca BC. Effect of foliar application of micronutrients on shelf life of cabbage.

Indian J Hort. 2005;65(2):160-162.

 Kotecha AV, Dhruve JJ, Patel NJ, Vihol NJ. Influence of micronutrients and growth regulators on the performance of cabbage quality. Adv. Res. J Crop Improv. 2016;7(1):46-51.

4. Bokade N, Bhalekar MN, Gupta NS, Despande A. Effect

https://www.thepharmajournal.com

The Pharma Innovation Journal

of growth regulators on growth and yield of tomato in summer. J Maharashtra agric. Unive. 2006;31(1):64 -65.

5. Reza M, Islam M, Hoque A, Sikder RK, Mehraj H, Uddin J. Influence of Different GA Concentrations on Growth and Yield of Broccoli American Eurasian Journal of scientific Research. 2015;10(5):332-335.