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Remote sensing based estimation of soil organic matter: 

A review 
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Balakrishnan, M Tilak, J Arockia Stephen Raj and P Jona Innisai Rani 

 
Abstract 
Investigating the SOM content is tedious and time-consuming. Each of the techniques employed for the 

assessment have its own constraints and advantages over the other techniques. These techniques range 

from the analytical experiments to long-term experiments with modelling procedures. (i.e.) employing 

geostatistical and ML algorithms. As the spatial variability of the soil is wide and complex besides the 

atmospheric conditions, achieving a homogeneous estimation of the SOM is difficult but considered 

indispensable in determining the soil health. Analytical means of precise SOM estimation are subjected 

to the sample SOM degradation and requirement of the high-cost reagents and equipment. Techniques for 

indirect measurement of SOM utilizing soil organic carbon through pedotransfer function also prevails. 

Spectroscopy based soil properties estimation are considered valuable for its heterogenous and site-

specific assessment through training and validation. The assessment of SOM helps in site-specific and 

variable rate application of the remedials in the field and helps in maintaining the environmental 

sustainability and preventing fertilizer loads in the soil. This paper provides a comprehensive review on 

the selective analytical and spectroscopy means of SOM estimation and its influence over the other soil 

nutrient properties. 

 

Keywords: SOM, soil organic carbon mapping, hybrid approaches; machine learning 

 

Introduction 

Soil is part of the basic skeletal framework performing key environmental functions of an 

ecosystem; from revitalizing carbon balance, water cycling, soil nutrient elements, habitats, 

climatic conditions, etc., About 80% of the carbon pool available are directly accounted from 

terrestrial ecosystem and surface of the soil contributes the largest carbon stock with the total 

of 1550 Gt of Organic Carbon. Hence, maintaining and stabilizing the carbon stocks are highly 

essential in enhancing soil fertility status and regulation of global carbon cycle (Duddigan et 

al., 2019) [1]. 

The organic carbon stock in the soil is depends on the variability of the SOM content. Hence 

the measure of SOC helps in indirect qualitative assessment of SOM (Santoiemma et al., 

2018) [2]. The major aspect in assessing the organic matter involves managing the SOM from 

rapid decomposition and reformation. This can be achieved through several of the physio-

chemical and biochemical management practices (i.e.) physical management by aggregate 

facilitation; chemical management by surface mineral organic matter binding; biochemical 

management through recalcitration (Alain F. Plante et al., 2006) [3]. In general, three basic 

forms of carbon are available in soil (i.e.) organic, elemental and inorganic. Major loss in 

carbon content of the soil is associated with SOM mineralization, improper agricultural 

practices and deviated climatic conditions prevailing over the region, which are usually 

mitigated by recarbonization management practices. In most of the cases, SOC stored as SOM 

are lost quickly due to land management practices (i.e.) conversion of natural soils into 

agricultural lands (Kwiatkowska-Malina., 2018) [4]. Other mitigation strategies involved in 

reducing the loss of organic carbon subjected to decomposition and mineralization includes 

biochemical stabilization, physical stabilization and chemical stabilization (Duddigan et al., 

2019) [1]. SOM in soils and sediments are characterized from simple carbohydrates to complex 

fat substances and organic acids. This characterization helps SOM in forming water soluble 

and insoluble complexes; binding clay minerals; absorbing and releasing soil nutrients. SOM 

content in soils is classified into three major pools: labile, stable and humins. Further the SOM 

are classified into two fractions (i.e.) humic substances (HSs) and labile organic matter. 

(Strosser 2010) [5]. 
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Humification is a key process mechanism in formation of 

humic substances (HSs) which in turn contributes to the SOM 

layer of the soil profile. Temporal analysis of the soil use 

analysis indicated the stability of the humus substances 

specific to a soil type over the years. Reduced SOM content in 

the soil is considered one of the eight main threats as 

presented in EU Soil Thematic Strategy, a fact stated by 

European Environment Agency, 2010.  

OM supplements with increased carbon content and decreased 

nitrogen are proven to be stable half-life supplements with 

relatively slower mineralization processes. Hence, careful 

selection of the fertilizers with exogeneous OM for organic 

amendments must be made. SOM degradation due to the 

influence of increased tillage practices modelled by the 

compartment soil organic carbon and long-term experiments 

indicated the positive effect of SOC stocks due to no till 

practices and crop addition factor (Bayer et al., 2006) [18]. The 

long-term experiments on the SOC stocks by varying the 

influential parameters (i.e.) tillage operations for assessment 

of the SOM requires processing of the large quantity of the 

data which are subjected to errors due to environmental 

variables and manual errors. Sustainable soil management can 

be achieved through qualitative understanding and 

quantitative modelling of SOM.  

As soil survey procedures provides possibilities for a finite 

assessment of the properties with decreased sampling points, 

quantitative assessment of properties majorly lies in the 

prediction. The analytical and long-term experiment 

procedures for estimation are generally time consuming and 

requires the need of high-cost laboratory reagents when the 

assessment and mapping is done at regional or national level. 

Other conventional mapping procedure involves spatial 

characterization based on the discrete soil classes, where the 

abrupt changes in the soil class boundary is assessed. These 

procedures were subjected to certain advantages (i.e.) spatial 

uncorrelation within classes, poor correlation between 

properties and mapped classes and misrepresentation of the 

abrupt change.  

The extractable spectral features of the soil provide profound 

possibilities in mapping spatial variability of SOM and other 

soil nutrient properties. Though the spatial variability can be 

eliminated through the Digital Soil Mapping (DSM) 

procedures, within-site variability constrains exists. The 

variability is accounted by the several natural processes 

influenced by the factors such as climate, soil type, land use 

etc., The within-site variability can be excluded by the use of 

variable rate technology which facilitates the precision 

agriculture. Precision agriculture tends to the site-specific 

needs of the soil and the crop through the remote sensing and 

geospatial techniques, DEM and other climatic variables. 

(Kingsley John et al., 2019) [16].  

In this context, the use of soil spectral information obtained 

through the spectroscopy measures for the model calibration 

involves the application of the analytical measures for training 

through Machine Learning (ML) procedures or calibration 

through employing statistical measures besides the other 

influential data (i.e.) Climatic data, environmental factors etc., 

The limitations in calibration and validation through statistical 

measures involves the selection of the spectral variable from 

Vis-NIR or MIR spectral bands or determination of the other 

influential soil parameter. 

Earlier, the use of geostatistical framework was prevalent in 

the spatial prediction of the soil information, which is a linear 

combination of the environmental covariates and spatial 

autocorrelated residuals and the prediction at unobserved 

location estimated through interpolation technique. The 

geostatistical models are considered for its assumptions on 

spatial variations and the uncertainty associated with the 

prediction measures. Conversely, the geostatistical models 

have several limitations which affects the model fit and the 

prediction accuracy. The limitations include the stationarity of 

the residuals, increase in the parameter estimated and the 

increased computational load due to the increased sample 

size. As an alternative, Machine learning approaches are 

employed for their increased efficiency when compared to the 

geostatistical models. “Machine learning techniques refer to a 

large class of non-linear data-driven algorithms employed 

primarily for data mining and pattern recognition purposes, 

and now frequently used for regression and classification 

tasks in all fields of science.” (Alexandre M.J-C. Wadoux et 

al., 2020) [7]. 

Unlike geostatistical models, machine learning techniques are 

void of assumptions and can process a large number of 

parameters. As conventional models (Geostatistical and 

statistical) are model-oriented and the predictive accuracy 

depends on the assumptions that makeup the model whereases 

machine learning techniques are data-driven and the 

predictions are made from the predictive model calibrated 

using an error-minimization process. This makes the model 

calibrated through the machine learning techniques more 

accurate than conventional models.  

 

 
Table 1: Effect of soil properties in the formation of the SOM 

 

Soil Property Soil Processes 

Soil structure Aggregation, organic matter turnover, retention, and transportation of water and chemicals 

Porosity Plant available water capacity, soil crusting, aeration, water entry 

Infiltration Soil water availability and movement, leaching of nutrients, erosion 

Bulk density Soil structural conditions, compaction 

Available water Field capacity, permanent wilting point, water flow 

pH Soil acidification, salinization, soil structural stability, biological and chemical activity thresholds 

Electrical conductivity Plant and microbial activity thresholds, leaching of salts, soil structure decline, salinization 

Plant available N, P, and K Availability of nutrients for plant uptake, losses from the soil–plant system 

Soil organic matter 
Organic matter storage and quality, plant residue decomposition, metabolic activity of soil organisms, 

mineralization–immobilization turnover, microbial activity, nutrient supply 

Total soil C and N C and N mass and balance, soil structure, nutrient supply. 

Source: Adapted from Jat, Mangi L., Clare M. Stirling, Hanuman S. Jat, Jagdish P. Tetarwal, Raj K. Jat, Rajbir Singh, Santiago Lopez-Ridaura, 

and Paresh B. Shirsath. "Soil processes and wheat cropping under emerging climate change scenarios in South Asia." Advances in 

Agronomy 148 (2018): 111-171. 
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The spatial variability of the soil is generally accounted by its 
influential parameters. The parameters include soil physical, 
chemical and microbial properties besides the climatic 
condition prevailing (Table 1). The effect of the influential 
parameters will have a characteristic impact on the SOM 
content due to its limited viability and lower lifetime when 
compared to that of the other properties. Hence accounting the 
effects of influential parameters and its characteristic study is 
required to employ long term experiments and pedotranfer 
functionalities if possible and required. This chapter review 
the effect of inverse effects of SOM and other properties. 
 
Soil physical properties 
The increase of the SOM is highly correlated with the 
management practices (i.e.) tillage practices and system 
adopted and are highly regarded for the acidic soils. The 
effect of SOM on other soil physical properties are considered 
to in order to implicate the pedotransfer functions. SOM is a 
composition of plant and animal debris including other 
compounds containing carbon with fractions of active 
(unprotected C) and stable (protected C) portions. The active 
portions are readily decomposable to enrich the fertility 
content and the stable portions remains stable in order to 
maintain the integrity of the soil. Rapid decomposition and 
reformation can lead to nutrient leaching and hence a 
recurrent and stable cycle must be facilitated. This process is 
influenced by that of the physical properties. Important 
physical properties that influence the SOM are detailed in this 
chapter. Most of studies defined the soil temperature as a key 
factor that influences the decomposition rates of the organic 
matter present. The decomposition rates are higher in tropical 
region when compared to that of the temperate zones. Hence 
maintaining labile organic matter is much more difficult and 
requires additional management practices. Literatures stated 
that the decomposition rates are doubled for each increase of 
8-9 oc in the mean annual air temperatures. 
Soil texture is an essential soil physical property that 
influences almost every other soil property in conjunction. 
The increase in the SOM is subjected to the increase in the 
clay textural proportions. The process is implicated via two 
different mechanisms. The first mechanics involves formation 
of the bonds that limits the degradation and the other 
mechanics involves influence of the aggregate particles or 
occludes the organic matter and. The former involves 
formation of the stable complex mineral structure 
(unprotected C) and mineral association (protected C) 
between the clay minerals and OM and the latter involves 
increase in the aggregate stability or aggregation which is 
tended to increase with increase in the clay content. Alain F. 
Plante Under similar climatic conditions, the clay soils have 
organic matter three to four time that of the sandy soils. The 
particle size of each of the textural classes are depicted in the 
table 2.  

 
Table 2: Particle size of the respective textural classes 

 

Textural class Particle size (Diameter) 

Sand 2 to 0.2 mm 

Slit 0.2 to 0.002 mm 

Clay < 0.002 mm 

Source: Adapted from Abd-Elmabod, Sameh K., Antonio Jordán, 

Luuk Fleskens, Jonathan D. Phillips, Miriam Muñoz-Rojas, Martine 

van der Ploeg, María Anaya-Romero, Soad El-Ashry, and Diego de 

la Rosa. "Modeling agricultural suitability along soil transects under 

current conditions and improved scenario of soil factors." In Soil 

mapping and process modeling for sustainable land use management, 

pp. 193-219. 

As Kaolinite has lower smaller specific surface and nutrient 

exchange capacity, the clay-humus complexes formation is 

limited. This results in the leaching and degradation of the 

organic matter in kaolinite soils under wet tropic conditions as 

the degradation is favored through the prevailing soil and 

climatic condition. Alain F. Plante et al., 2006 [3] studied the 

effect of different textural classes on the C in the physically 

and chemically defined pools of the organic matter based on 

the measurable fractions. The study resulted in no 

considerable relationship between the soil textural classes and 

the unprotected organic C and stated that the clay soils or the 

clay and silt soils may not be always a best indicator of the 

soil organic matter has the organic C are subjected to changes 

through several direct and indirect mechanisms.  

Soil Structure is related to the stability of the soil and has 

largely influenced by the organic matter. The structure 

involves formation of the micro-aggregates, resulted from that 

of the interaction between the organic matter and the mineral 

particles. This holds the soil particles as a firm structure based 

on the prevalence of the organic matter as it generates organic 

compounds (i.e.) polysaccharides that as a binding agent. The 

macro-aggregates are formed from linking of the micro-

aggregates, facilitated by the fungal hyphae and the fine root 

zone of the plants. Decrease in the soil organic content affects 

the structure of the soil and results in the low infiltration rate, 

increased run off and soil erosion.  

Soil moisture content is usually associated with the increased 

biomass production, which results in the increased organic 

residues and the increased organic matter. In this case, the 

increase is usually derived from the increase in the mean 

annual precipitation. Biological activity of the soil usually 

requires air and moisture. Though increased moisture is key 

benefactor parameter, the increased moisture content results 

in filling up the pores and deprives microbes of their oxygen. 

This affects mineralization process of the plants and slower 

decomposition rates of the plant residues which may lead to 

the reduced productivity. Similarly, dry soils considerably 

also have a slower decomposition rate, with other parameters 

being constant.  

The soil-water relationship is also facilitated by the increased 

organic matter as it is promoted by the increase aggregate 

formation, which in turn increases the macropore formation 

and improves water retention and infiltration capacity of the 

soil. The dry and wet seasons of the humid, sub-humid and 

semi-arid tropics are subjected to the increased nitrate 

formation during their first rainy season. The nitrogen 

mineralization invoked by the first few rains results in the 

formation of the labile organic matter (Fao.org.in). 

 

Soil chemical properties 

The study of soil chemical properties and their interactions on 

the organic matter as a quantified variable is essential in 

modelling their formation and decomposition rates. 

Considering the spatial variability of the chemical properties 

and their heterogeneity in composition over the field 

conditions, maintaining an optimum condition is required for 

the growth of soil microbial population. Though the microbial 

population has the much more direct influence on the 

degradation and the breakdown of the plant residues, 

chemical properties of soil have its own interaction in the 

mineralization of the soil organic matter. This chapter reviews 

the effect of the chemical properties in the mineralisation of 

the organic matter.  

https://www.thepharmajournal.com/
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Despite that the acidity of the soil is key parameter in 

influencing the mineralization of the soil organic matter, 

quantification of its effects in the agronomic system are 

difficult to access. Many of the modelling procedures for 

measuring the soil organic matter (i.e.) century and 

Rothamsted model, excluded the effect of the pH while 

calibrating the model. Studies revealed a progressive decrease 

in the organic matter when the pH below about 6. The rate of 

the mineralization respective of the pH change also depends 

upon the size of the organic matter pool. Denis curtin et al., 

1997 [8] studied the effect of pH on the mineralization of the C 

and N with Ca (OH)2 treatment to increase the pH of the soil 

samples. The treatment composition has been altered based on 

the acidity exchangeable proportions for each of the soil 

types. The increase in the pH resulted in the loosening of the 

bond and showed an evident increase in the mineralization 

process. Salinity of the soil also has a characteristic or 

negative effect on the Organic matter of the soil. Increase in 

the sodium ion content leads to the leaching and depletion of 

the organic matter.  

 

Soil microbial properties 

The role of soil microbes in synthesizing SOM is very evident 

and several of the model depicting the quantification of the 

SOM included or supplemented the microbial activity as a 

variable for the SOM formation. Some of the stable SOM 

formed shown the characteristic feature of the microbial 

enzymes and cytoplasmic materials and excretions rather than 

the properties of the plant material. The conversion of the 

plant residues to that of the microbial residues followed by its 

stabilization determines the effect of the surface and the 

climatic conditions on the SOM. The SOM formation in the 

soils of low biological activity is subjected to the 

destabilization and leaching. The quantitative assessment of 

the SOM is typically hindered by the microbial biomarkers 

such as lipids and amino acids as they cannot be scaled to a 

whole-soil basis. In general, the plant residues are degraded 

by that of the microbial community to microbial residues of 

organo-mineral compounds includes ligand bonds with low 

temperature sensitivity.  

Cynthia M. Kallenbach et al., 2016 [9] studied and provided 

results on the direct effect of the microbial community on the 

formation of the stable SOM besides the ecophysiological 

functions that affects the formation. The study provided 

information on the plant residue decomposition by the 

microbial community and its increased importance than that 

of the clay mineral content. The study involved modeling for 

a quantitative assessment of the microbial activity on the 

simple C low molecular weight substrate rather than the 

complex plant system. Gradient system at different levels of 

simple C substrate was established to hypothesize or depict 

the formation of the microbial colonies and their interactions 

on the C substrate with different treatments (i.e.) sugar; 

syringol; sterile sand and kaolinite; dissolved organic carbon 

and field soils. The model used resulted in defining the 

importance of the microbial communities on the SOM 

formation over the effect of clay mineralogy and other known 

control SOM dynamics.  

 

Recent and advanced analytical measures of SOM  

Space borne remotely sensed imagery has an immense 

potential as an enabling tool for the generation of spatial maps 

of the upper soil horizon, owing to the proven background in 

interlinkages among soil’s specific chemical bonds and 

electromagnetic radiation. Optical satellite multispectral 

imagery started to be used extensively in quantitative SOC 

characterization with the launch of the first satellites in the 

1980s (Frazier and Cheng, 1989) [19]. Applications based on 

hyperspectral data became popular several years later when 

the Hyperion spaceborne system became operationally 

available (Castaldi, et al., 2014). Until now, their use was 

limited for soil observation due to (i) the required 

atmospheric, geometric and radiometric data corrections, (ii) 

simultaneous ground observations, (iii) the difficulty in 

finding large bare soil areas within a single image (Demattê, 

et al. 2018) [10] and (iv) obstacles related to vegetation cover 

(Barnes, et al. 2003) [20]. Consequently, there are few studies 

using satellite sensors for SOC estimation (Croft, et al. 2003) 
[21]. Currently, SOC estimation and mapping based on 

spaceborne data is undergoing a significant shift. The relevant 

USGS policy change, that enabled Landsat data to be 

distributed at no charge, can be considered a major milestone 

to that direction (Woodcock, et al., 2008) [22]. Furthermore, 

this is driven by the advent of the Big earth observation data 

era, spearheaded by Sentinel-2 free and open super spectral 

imagery, as well as by the emergence of large fleets of small 

satellites (e.g., Planet Cubesats, (www.planet.com). In 

addition, the forthcoming hyperspectral sensors, such as the 

Environmental Mapping and Analysis Program (EnMAP) 

(Stuffler, et al., 2007) [11], will soon provide unprecedented 

data streams (high spatial, spectral and temporal resolution) 

for the retrieval and hence monitoring of SOC, across the 

VNIR–SWIR spectral range. 

 

Remote sensing based assessment of SOM  

RS techniques vary depending on their spatial, spectral, 

temporal and radiometric resolution and the platforms that are 

mounted. Selecting the proper technique depends on the field 

of application, the measured property and the expected 

accuracy. These technologies have shown their great use for 

monitoring environmental parameters towards management of 

natural resources and their rapidly increasing use is due to the 

significant advancements in terms of sensors specifications. 

Sensors mounted on satellite platforms have improved from 

panchromatic to multispectral and the forthcoming 

hyperspectral, such as EnMAP, HyspIRI, and PRISMA. 

Hence the availability of these sophisticated hyperspectral 

sensors, could expedite RS applications in the field of 

agriculture, while contribute to an advancement of operational 

applications for environmental purposes. Subsequently, they 

could provide valuable information on soils’ condition and 

SOC estimation either directly or by providing auxiliary data. 

Consequently, they could supply the necessary data for 

accurate and up-to-date soil maps to meet the current and 

future needs for soil monitoring.  

The main advantages of RS applications can be summarized 

as follows: (i) they are a non-destructive way to gather 

information about soil properties, (ii) the provided data cover 

large geographical areas, (iii) they can provide information 

about inaccessible areas, (iv) they provide data that hold 

information for several attributes, (v) they have the ability to 

provide concise data and (vi) provide the means to reduce 

traditional and laborious soil sampling campaigns. 

Soil organic matter (SOM) is the organic matter content of 

soil, consisting of plant and animal detritus at various stages 

of decomposition, cells and tissues of soil microbes, and 
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substances that soil microbes synthesize (Brady & Weil, 

2008) [12]. SOM provides numerous benefits to soil 

physicochemical properties (such as preserving soil moisture, 

increasing soil stability, and protecting soil structure) and its 

capacity to provide regulatory ecosystem services (Lehmann 

& Kleber, 2015) [13]. In addition, SOM can be a source or sink 

for atmospheric CO2 depending on land use, and soil 

management, vegetation and water resources (Lal et al., 2021) 
[14]. Increased carbon stocks in the soil increase soil fertility, 

workability, water holding capacity, and reduce erosion risk. 

Increasing soil organic matter can thus reduce the 

vulnerability of managed soils to future global warming 

(Schmidt et al., 2011; Smith, 2012) [15, 25]. Therefore, SOM is 

especially critical for maintaining soil functions, and its 

content is considered a reliable indicator for evaluating soil 

quality and degradation (Franzluebbers, 2002) [16]. 

There is a wide absorption region of SOM in the visible bands 

(Stenberg et al., 2010) [17]. In general, a higher SOM content 

of soil corresponds to darker colors. Spectral reflectance 

decreases with an increase in soil organic matter content, 

mainly affected by the soil chromophore and the dark humic 

substances (Shi, Wang, et al., 2014) [24]. In terms of the near 

infrared region, the overtones and combinations due to SOM 

are mainly attributed to the stretching and bending of NH, 

CH, and CO groups (Stenberg et al., 2010) [17]. Considering 

the explicit relations between SOM and spectral reflectance, 

qualitative detection and quantitative estimation of SOM 

based on RS and proximal sensing methods have always 

received much research attention 

Many scholars have used multispectral RS images to estimate 

and map spatial patterns of SOM across different regions, 

scales, and soil types (Stenberg et al., 2010; Wang et al., 

2010) [17, 27]. These studies have demonstrated that the optical 

multispectral RS data, including Moderate-resolution Imaging 

Spectroradiometer (MODIS), Landsat series, Advanced Space 

borne Thermal Emission and Reflection Radiometer 

(ASTER), China & Brazil Earth Resource Satellite (CBERS), 

Chinese Gaofen-1 (GF-1), Chinese Huanjing satellite 

constellation-1 (HJ-1), Systeme Probatoire D'Observation De 

La Terre (SPOT) series, Advanced Land Observation Satellite 

(ALOS), and IKONOS present great potential for the 

assessment and prediction of the SOM distributions, 

especially at large scale (Angelopoulou et al., 2019; Sullivan 

et al., 2005) [23]. However, coarse spectral resolution and 

cloud cover always hampered the employment of these data. 

In this case, researchers have introduced hyperspectral RS and 

portable VNIR spectrometers to increase the performance of 

SOM estimation (Mulder et al., 2011) [28]. Mallah Nowkandeh 

et al. (2018) [28] investigated the potential of Hyperion 

imagery for estimating SOM content and compared several 

regression technologies. Based on Hyperion spectra, Wang et 

al. (2010) [27] mapped the SOM in Mu Us desert based on land 

degradation spectral response units. For field/laboratory 

VNIR spectroscopy, Shi, Wang, et al. (2014) [24] developed a 

national VNIR soil spectral library (1581 soil samples) to 

predict SOM concentrations, providing an alternative for soil 

degradation monitoring. Rossel et al. (2016) [30] analyzed a 

global soil VNIR spectral library and explored the usefulness 

of the global spectra for predicting soil attributes such as soil 

organic carbon. The results suggest that the global VNIR 

library describes soil variation and that the spectra provide an 

integrative measure of the soil, which can be used for both 

qualitative and quantitative soil analyses. In fact, SOM is one 

of the typical soil properties with high spatial variability. 

However, the estimated SOM content is the individual value 

at a single point, and these data are actually discrete in space. 

Therefore, it is hard to characterize its spatial patterns only 

using field/laboratory VNIR spectroscopy (Angelopoulou et 

al., 2019) [23]. Furthermore, a specific SOM content (20 g/kg) 

seems to be a threshold, that is, if the SOM drops below 2% 

(commonly found in degraded lands), it became less accurate 

for the evaluation of the spectral response (Ben-Dor, 2002) 
[24]. In other words, some other compositions, such as salinity 

and iron oxide, affect soil spectral behaviors more 

significantly (Ben-Dor et al., 2002) [24]. Thus, how to remove 

these interferences has attracted much attention in recent 

years. For example, Liu et al. (2018) introduced the External 

Parameter Orthogonalisation (EPO) preprocessing algorithm 

to reduce the potential effects of iron oxide and moisture. 

Wang et al. (2014) [14] established a predictive model with 

better accuracy and stability based on fractional-order 

derivative pretreated spectra. Considering salt-affected soils, 

Zhang, et al. (2021) [46] developed some strategies for 

efficiently estimating SOM through NIR spectroscopy. These 

advanced approaches provide new solutions and reliable 

support for accurately estimating SOM. 

Remote sensing methodologies provides rapid, non-

destructive means of estimation of SOM at places that are 

inaccessible for chemical and analytical means of estimation. 

Though quantification of the SOM through chemical 

analytical means are found to be accurate, spatial variability 

of the SOM cannot be accounted via conventional means. 

Hence, remote sensing methodologies can be used to account 

the spatial variability, which in turn can be utilized for the 

site-specific management and formation of the prescription 

map. In general, the SOM estimation through remote sensing 

measures can be facilitated through geo-statistical modelling 

and through the Digital soil mapping procedures.  

 

Digital soil mapping – SOM assessment and mapping  

Why will we need more DSM? 

 All plausible futures require more soil information and 

the utility promised through DSMA. A focus on 

alternative futures allows us to explore the breadth of that 

potential need. 

 New options arise in the ‘outlook vision’ view. The 

breadth of land uses grows and the emphasis on matching 

those choices to a more nuanced understanding of soil 

capacity will be crucial. As corporate sustainability goals 

become increasingly common, consumer demands for 

sustainably produced food will increase (Thomson et al. 

2020) [38]. The condition of the soil becomes a reported 

asset within the supply chain which will potentially grow 

sustainable producers’ profit relative to those producing 

food in unsustainable ways. In both the slow decline and 

outlook vision scenarios, the focus on managing soil 

capacity and resilience, and thus the need for appropriate 

soil information, will need to increase but through 

different drivers, the former as a crisis or restoration 

need, the latter as part of the accent on information-led 

productivity and capacity optimization. 

 

Prior soil information can be used as a covariate in digital 

mapping of soils (McBratney et al., 2003) [29]. Soil classes and 

properties such as texture, bulk density and clay mineralogy 

can explain the variability in SOC. Some studies in digital 
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mapping of SOC have successfully used legacy soil maps as 

the covariates for predicting SOC. For example, reference soil 

group was an influential predictor of SOC stocks in a semiarid 

steppe ecosystem in China (Wiesmeier et al., 2011) [31]. 

However, it had less influence than land use and more 

influence than geological units for predicting SOC in their 

study. Categorical soil map of 1:50,000 scale was taken by 

Adhikari et al. (2014) as an environmental variable to map 

soil organic carbon stocks and content in Denmark and the 

relative usage of the soil map in their prediction model was 

reported to be above 60% for predicting SOC. Various soil 

attributes have been demonstrated to be influential in 

determining SOC content. Soil properties, such as texture, 

mineralogy and bulk density, were reported to be strongly 

associated with SOC, especially below the depth of 20 cm 

(Badgery et al., 2013; Jobbagy and Jackson, 2000). Bulk 

density was found to be an important explanatory variable for 

SOC content in the study of Hobley et al. (2015). It was 

negatively correlated with SOC content. However, the 

relationship was not linear. Influence of site factors including 

bulk density was found to increase with depth. Total nitrogen 

content was highly correlated with the spatial distribution of 

SOC stocks (Were et al., 2015). However, using soil nitrogen 

content as a predictor may not be feasible due to 

unavailability of the data to cover large geographic extents. 

However, such data might be available at farm-scale mapping. 

Soil texture data is highly recommended as a covariate for 

DSM of SOC as far as available as it has been demonstrated 

to be highly correlated with SOC content (Zinn et al., 2005). 

While legacy soil maps may be useful covariates, the spatial 

coverage and mismatch in location in relation to recent 

covariates may limit their use. 5.5. Validation and the 

mapping of uncertainty Minasny et al. (2013) [32] reported that 

half of the SOC mapping studies using a digital mapping 

approach had not validated their work. In our review, all of 

the studies were found to have performed validation. Of 120 

studies, external validation was carried out in 11 studies, 

which is more than in the review of Minasny et al. (2013) [32] 

that reported only 3 studies to have performed external 

validation for predictive mapping of SOC. Majority of the 

studies in our review used data-splitting technique for 

evaluating the results, followed by cross-validation. 

Regarding the mapping of uncertainty, 49 of 120 articles were 

found to have presented spatially explicit estimation of 

uncertainty for predicting SOC. Contrary to the earlier review 

by Minasny et al. (2013) [32], studies that used ML techniques 

have also performed spatially explicit assessment of 

uncertainty. This shows a clear progress in the context of 

validating the predictive mapping of SOC. However, most of 

the studies that used data splitting technique have claimed it 

to be an independent and external validation. Brus et al. 

(2011) [33] define data-splitting as a form of internal 

validation. Furthermore, according to Brus et al. (2011) [33], 

when the original point sample data set is not collected 

through probability sampling, data-splitting cannot yield 

random samples that could provide unbiased and valid 

estimates of the quality measures and associated estimation 

errors for validating the predictive mapping in DSM 

framework. Most of these studies were following the data-

splitting or cross-validation method even for the soil sample 

datasets that were collected through purposive, haphazard or 

convenient sampling techniques. In addition to mapping of 

SOC concentration and stocks, there have been some trends in 

mapping SOC in other dimensions using DSM approach. 

Chen et al. (2018) [10] mapped carbon sequestration potential 

in France and found subsoils to have larger potential to 

sequester SOC compared to topsoils. Some recent DSM 

studies have mapped changes in the level of SOC 

concentration and stocks with respect to current and projected 

land use/land cover and climate change scenarios (Gray and 

Bishop, 2016; Yigini and Panagos, 2016; Zhou et al., 2019a) 
[30]. Mapping in such dimensions can assist in visualizing 

different probable scenarios and proactive planning of 

projects to target enhanced sequestration of SOC. 

 

Conclusion 

Following the systematic mapping approach, this paper 

reviewed various algorithms and environmental covariates 

used in the digital mapping of SOC concentration and stocks 

in the recent past and their suitability. It identified geographic 

clusters and gaps regarding the empirical knowledge in the 

field of digital mapping of SOC. There is an uneven spatial 

distribution of empirical studies aimed at mapping SOC using 

digital mapping approaches. Studies are clustered in several 

countries, namely China, Australia and the USA. Regarding 

the temporal trend of studies, from 2013 onward, the number 

of publications reached a maximum in 2016 and 2017, but 

decreased substantially after that time until 2018. Regarding 

the predictive models, there has been a shift from Linear to 

ML ones in comparison to the earlier review in 2013. 

Although RF was found to be better than other algorithms in 

most of the comparative studies, no single model was found 

to be the strongest in all circumstances. Regression Kriging or 

hybrid models combining the modelling of deterministic and 

stochastic errors were superior to the separate models that 

either dealt with deterministic parts or interpolate only using 

the spatial autocorrelation of SOC. Among various predictive 

models, there were a significant number of primary studies in 

relation to some promising algorithms, namely RF, Cubist, 

BRT, SVM, NN and GWR. Therefore, in order to achieve 

rigorous comparison of these models, a meta-analysis 

approach is recommended to assess the most competitive 

algorithms. However, for other algorithms, primary research 

is still required to fill existing knowledge gaps. The 

relationship of environmental covariates to soil carbon levels 

was found to depend principally upon environmental 

conditions, depth of soil, resolution of mapping, and the 

extent of the area under concern. For mapping at regional 

extents, climate was reported to be the most important factor 

in SOC levels, followed by parent materials, topography and 

land use. However, for mapping at a resolution that represents 

plots or small fields, variation in land use was claimed to be 

more influential in predicting SOC. Local variation in 

topography was also stated to be influential for determining 

SOC level. Minasny et al. (2013) [32], reported topographic 

variables as the most widely used covariates for predicting 

SOC. However, our review shows that variables representing 

‘organisms’ factor are among the most frequent ones among 

top five important covariates, followed by the covariates 

representing ‘climate’ and then ‘topography’ factors. While 

better models and covariates are important for improving the 

prediction accuracy, other factors such as the size and the 

representativeness of the training samples are equally 

significant for predictive mapping of SOC. In comparison to 

an earlier review by Minasny et al. (2013) [32], it has become a 

more common practice to validate the SOC mapping tasks 
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and estimate spatially explicit uncertainty of prediction using 

statistical methods in order to improve reliability and 

accuracy of SOC estimation.  

However, additional probability sampling for evaluating the 

predictive performance was still not found in most studies 

reviewed, probably due to the additional resources and time 

needed for this practice. Most studies used data-splitting and 

claimed it to be an independent evaluation of the results. It is 

recommended to perform external validation using soil 

sample datasets collected through additional probability 

sampling approaches for an unbiased assessment of the 

prediction of SOC concentration and stocks. 
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