www.ThePharmaJournal.com

The Pharma Innovation

ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(7): 375-379 © 2023 TPI www.thepharmajournal.com

Received: 07-04-2023 Accepted: 10-05-2023

Biswajit Sahoo Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Sandeep Bhandarkar Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Ramlakhan Verma

Crop Improvement Division, ICAR-NRRI, Cuttack, Odisha, India

Segregation analysis using SSR marker in rice (*Oryza* sativa L.)

Biswajit Sahoo, Sandeep Bhandarkar and Ramlakhan Verma

Abstract

Rice (Oryza sativa L.) is one of the major food crops, feeding more than half of the world's population. Major aim of rice breeding program is to enhance the yield potential by utilizing genetically diverse parent. The study was conducted in Kharif 2016 and Rabi 2016-17 at the Research and Instructional Farm, Indira Gandhi Krishi Vishwavidyalaya (IGKV), Raipur, Chhattisgarh and Kharif 2017 at Research Farm of National Rice Research Institute (NRRI), Cuttack, Odisha (India). 10 rice parental genotypes, Chandrahasini, Samleshwari, Durgeshwari, IC-134022, IC-388728, IC-389860, IC-390376, IC-548384, Indira Barani Dhan1, IRHTN-105 and seven F3-F4 populations were taken for the study. Two hundred eighty-eight microsatellite primers (288 SSR and 38 gene based markers) were individually assayed on DNA of the parental genotypes (IC-548384, Chandrahasini, IC-390376, Samleshwari, IC-134022, Durgeshwari, and IC-388728, IC-389860) to reveal polymorphisms. Of these primers, 32 markers showed polymorphisms were utilized for trace the allelic contribution of the parental lines to their progeny; and drought and yield related specific genes. Total 32 segregating loci (95.65%) showed Mendelian pattern in segregation at p = 0.05 and p = 0.01, all are fit to a 1: 2: 1 ratio (Table 1). Distorted segregation ratios were found for markers RM-11846 ((IC-548384 X Chandrahasini) with $\chi 2 = 6.456$, (IC-390376 X Samleshwari) with $\chi 2 = 10.75$ & (IC-134022 × Durgeshwari) with $\chi 2 = 6.78$), RM-20773 ((IC-389860 X Samleshwari) with $\chi 2$ =6.087) and qDT-3850 (IC-548384 X Chandrahasini) with $\chi 2$ =12.432) at p < 0.05 and p.01 probability level in the F3 population.

Keywords: Genes, microsatellite primers, molecular marker, polymorphisms, distorted segregation

Introduction

Rice is one of the leading food crop feeding more than half Global population has cultivated across a wide range of ecosystem e.g. irrigated, rainfed lowland, rainfed upland and aerobic ecosystem. Increasing population and decreasing agricultural lands etc. need a higher rice grain to feed entire population. Hybridization is the basic breeding to combine desirable traits to improve grain yield in rice (Selvi *et al.* 2015) ^[7]. Analysis of segregating population is foremost thing to know the combination of desirable traits which are more desirable and durable. Analysis of segregation pattern is more helpful to know the segregation distortion which gives the idea about the sterility and gametophytic genes. Segregation distortion depends on many factors e.g. mapping population, genet transmission, gametic and zygotic selection, non-homologous recombination, gene transfer, transposable element and environment agents (Xu *et al.* 1997)^[10].

No. of molecular markers are available e.g. morphological, isozymes, and DNA markers (Zamir and Tadmor, 1986)^[11] for segregation study. In barley, RFLP (Heun *et al.*, 1991), RAPD (Manninen, 2000)^[3], AFLP (Qi *et al.*, 1998)^[6] are commonly used. As molecular markers are suitable for distortion segregation analysis as these are not influenced by environment, co-dominant in nature, highly polymorphic in nature, evenly distributed in the genome, efficient, less quantity of DNA is required, highly cost effective and transferability (Mason, 2015)^[4].

SSR markers are effective for the analysis of genetic polymorphism (Forrester *et al.*, 2020)^[1], population structure analysis, gene mapping and tagging, linkage map construction, tracing marker-trait association, Marker Assisted Selection (MAS) and others. (Shivani *et al.*, 2020)^[8]. Marker segregation distortion were determined and compared with chi-square analysis and given genotypic class within a segregation population (Xu *et al.*, 1997)^[10]. The present study was concentrated on the presence of segregation distortion using SSR markers.

Corresponding Author: Biswajit Sahoo Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India

Material and Methods

Molecular analysis of breeding lines: The leaf samples of 306 lines of seven breeding population were collected from 15-20 days old seedlings grown at ICAR-NRRI, Cuttack during early hours (8am to 9am) and stored at -80oC for DNA isolation. Total genomic DNA was extracted from young leaves by modified CTAB method (Murray and Thompson, 1980)^[5].

Data Analysis

Chi-square test: The F2, F3, populations were analysed independently for each trait to determine the mode of inheritance by following χ^2 (chi-square) test as suggested by Fisher (1936)^[12].

Result and Discussion

Level of polymorphism in parental genotypes

Two hundred eighty-eight microsatellite primers (288 SSR and 38 gene based markers) were individually assayed on DNA of the parental genotypes (IC-548384, Chandrahasini, IC-390376, Samleshwari, IC-134022, Durgeshwari, IC-388728, IC389860) to reveal polymorphisms. Of these primers, 32 markers showed polymorphisms were utilized for trace the allelic contribution of the parental lines to their progeny; and drought and yield related specific genes.

Segregation analysis

Presence or absence of each fragment was scored in the F3 population of six combinations. Total 32 segregating loci (95.65%) showed Mendelian pattern in segregation at p =0.05 and p = 0.01, all are fit to a 1: 2: 1 ratio (Table 1; Fig.1). Distorted segregation ratios were found for markers RM-11846 (IC- 548384 × Chandrahasini with $\chi 2 = 6.456$, (IC-390376 × Samleshwari) with $\chi 2 = 10.75$ & IC134022 × Durgeshwari with $\chi 2 = 6.78$), RM-20773 (IC-389860 \times Samleshwari with $\chi 2$ =6.087) and qDT-3850 (IC- 548384 \times Chandrahasini with $\chi 2 = 12.432$) at p < 0.05 and p < 0.01probability level in the F3 population (Wang et al., 2005)^[9]. Complete homogeneity for alleles of either parent, suggesting that F3 populations are true representatives of the normal gametic constitution in F2. It indicated that allelic contribution both parents in each F3 populations are equal, followed Mendelian fashion of inheritance (Sayed et al. 2002) ^[13]. Hence, derivatives generated are equally contributed by both parental genomes.

Table 1: Allelic contribution of parental lines to their F3 derivatives

Marker	Crosses		F ₃ population		***
		Fa (0.375)	Fb (0.375)	Fh (0.25)	\mathbf{X}^2
	C1	0.48	0.44	0.08	0.156
	C2	0.64	0.28	0.08	1.112
D) (101/7	C3	0.68	0.27	0.05	2.016
RM10167	C4	0.68	0.28	0.04	0.002
	C5	0.52	0.42	0.06	0.118
	C6	0.28	0.66	0.06	0.248
	C1	0.38	0.52	0.10	0.092
	C2	0.28	0.64	0.08	1.058
RM11258	C4	0.34	0.60	0.06	0.020
	C5	0.52	0.42	0.06	0.149
	C6	0.50	0.42	0.08	3.011
	C1	0.82	0.14	0.04	6.456*
	C2	0.50	0.44	0.06	0.750
DN 11046	C3	0.93	0.02	0.05	10.759**
RM-11846	C4	0.78	0.16	0.06	6.780*
	C5	0.58	0.38	0.04	0.360
	C6	0.56	0.40	0.04	4.002
	C1	0.47	0.51	0.02	0.055
	C2	0.54	0.42	0.04	0.045
DM 10460	C3	0.40	0.55	0.05	0.079
RM-12469	C4	0.42	0.54	0.04	0.003
	C5	0.44	0.48	0.08	0.048
	C6	0.46	0.46	0.08	0.002
	C1	0.57	0.33	0.10	0.072
RM-14946	C2	0.72	0.26	0.02	4.118
	C3	0.61	0.34	0.05	1.084
	C5	0.28	0.64	0.08	1.459
RM-15855	C1	0.47	0.52	0.01	0.553
	C2	0.20	0.62	0.18	0.251
	C3	0.57	0.42	0.01	2.273
	C5	0.44	0.53	0.03	0.260
	C1	0.26	0.70	0.04	2.460
RM-17263	C3	0.34	0.59	0.07	0.062
	C5	0.42	0.56	0.02	0.054
DM16706	C1	0.44	0.36	0.10	0.392
RM16706	C5	0.56	0.40	0.04	0.073
RM-17349	C1	0.42	0.54	0.04	0.084
	C2	0.48	0.46	0.06	0.030

https://www.thepharmajournal.com

	1	1	n	1	-
	C3	0.40	0.55	0.05	0.376
	C4	0.22	0.46	0.52	0.02
	C5	0.58	0.38	0.04	0.609
	C6	0.48	0.48	0.04	0.044
	C1	0.54	0.44	0.02	0.644
RM-18530	C4	0.36	0.56	0.08	0.353
	C5	0.46	0.35	0.19	0.178
	C1	0.52	0.44	0.04	0.014
	C2	0.44	0.52	0.04	0.971
	C3	0.50	0.32	0.04	0.108
RM-19101					
	C4	0.60	0.34	0.06	0.400
	C5	0.50	0.44	0.06	0.457
	C6	0.46	0.52	0.02	0.144
RM-20724	C1	0.36	0.56	0.08	0.542
KWI-20724	C5	0.44	0.48	0.08	1.298
	C1	0.42	0.46	0.12	0.146
	C3	0.52	0.42	0.06	0.105
RM-20773	C5	0.68	0.26	0.06	2.507
	-				
	C6	0.74	0.18	0.08	6.087*
RM-21024	C1	0.35	0.31	0.04	0.517
10.1 21027	C4	0.30	0.60	0.04	0.288
	C1	0.46	0.44	0.04	0.128
	C2	0.66	0.26	0.04	1.161
RM-21539	C3	0.54	0.37	0.12	0.234
	C4	0.42	0.50	0.04	0.130
	C6	0.44	0.32	0.12	0.236
	<u>C1</u>	0.38	0.50	0.12	0.212
	C3	0.44	0.41	0.15	0.102
RM-21842	C4	0.42	0.54	0.04	0.040
	C5	0.68	0.24	0.06	0.338
	C6	0.50	0.42	0.08	0.081
	C1	0.44	0.34	0.22	0.510
	C4	0.60	0.34	0.06	0.420
RM-22914	C5	0.34	0.62	0.04	0.350
	C6	0.54	0.38	0.04	0.251
	<u>C1</u>	0.45	0.45	0.10	0.159
RM-23937	C2	0.30	0.64	0.06	0.259
1011 20707	C3	0.55	0.40	0.05	0.664
	C4	0.42	0.46	0.04	1.303
	C1	0.69	0.29	0.02	0.337
RM-24240	C2	0.24	0.64	0.12	0.736
	C5	0.36	0.48	0.16	0.140
RM-24414	C6	0.62	0.32	0.06	0.601
1111-27714	C1	0.02	0.32	0.00	0.520
RM-24448	C2	0.46	0.52	0.02	0.274
-	C3	0.52	0.40	0.08	0.617
	C5	0.58	0.38	0.04	0.200
RM-24495	C1	0.50	0.46	0.04	0.643
	C2	0.53	0.45	0.02	0.229
	C5	0.52	0.36	0.12	0.592
	C2	0.50	0.34	0.16	0.884
	C3	0.49	0.43	0.08	0.575
RM-25679	C4	0.49	0.43	0.08	0.733
	-				
	C5	0.50	0.40	0.10	0.137
RM-25735	C3	0.39	0.56	0.05	0.519
20,00	C5	0.26	0.62	0.12	0.013
	C1	0.42	0.54	0.04	0.331
DM 06200	C4	0.36	0.54	0.10	0.436
RM-26302	C5	0.70	0.26	0.04	3.305
	C6	0.52	0.41	0.07	0.326
	C1	0.32	0.41	0.07	1.375
	C2	0.36	0.60	0.04	0.887
RM-28767	C3	0.31	0.64	0.05	0.012
	C4	0.52	0.36	0.12	0.195
	C5	0.22	0.74	0.04	4.366
		0.22 0.52	0.74 0.40	0.04 0.08	4.366 0.618

https://www.thepharmajournal.com

	C3	0.52	0.46	0.02	4.195		
	C4	0.42	0.56	0.02	0.134		
	C5	0.62	0.34	0.04	1.987		
	C6	0.50	0.48	0.02	0.195		
	C1	0.64	0.34	0.02	0.015		
GS-3-SR-17	C2	0.47	0.49	0.04	0.147		
	C5	0.52	0.44	0.04	0.080		
GS-3-RGS-1	C5	0.36	0.56	0.08	1.299		
GN1A	C1	0.68	0.30	0.02	0.291		
QDT-16030	C7	0.32	0.54	0.14	0.332		
QDT-3850	C7	0.94	0.00	0.06	12.432**		
Mean		0.48	0.45	0.07			

Note: *- Significantly deviated at 0.05 (χ 2 (t) = 5.99 for F₃, **-significantly deviated at 0.01 (χ 2 (t) = 9.21 for F₃; (F_a) frequency of A allele, (F_b) frequency of B allele, (F_b) Frequency of heterozygote.

Note: C1- IC- 548384 x Chandrahasini C2- IC -390376 x Chandrahasini

C3- IC-390376 x Samleshwari

C4- IC-134022 x Durgeshwari

C5- IC-388728 x Chandrahasini

C6- IC-389860 x Samleshwari

C7- Indira Barani Dhan 1 x IRHTN-105

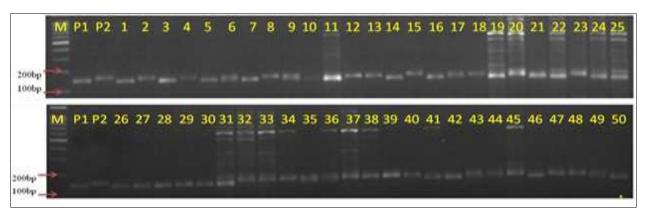


Fig 1: Banding pattern of RM28767 in C4 breeding lines (a & b), P1=IC-134022, P2 = Durgeshwari, lines-1-50, Marker (M) = 100 bp, amplicon range-150 bp-180 bp

Conclusions

Preferential sustainability of gametes of better parent in segregating generation found to be having substantial segregation distortion. Confirming the homozygosity, molecular analysis of the segregants is helpful to trace the allelic contribution of parental genotypes in derivatives. assessment Molecular marker based of allelic contribution/genetic gain in derivative population was carried out which shown substantial results. Total 32 segregating loci (95.65%) showed Mendelian pattern in segregation at p = 0.05 and p = 0.01, all are fit to a 1: 2: 1 ratio (Table 1). Distorted segregation ratios were found for markers RM-11846 ((IC-548384 X Chandrahasini) with $\chi 2 = 6.456$, (IC-390376 X Samleshwari) with $\chi 2 = 10.75$ & (IC-134022 × Durgeshwari) with $\chi 2 = 6.78$), RM-20773 ((IC-389860 X Samleshwari) with $\chi 2 = 6.087$) and qDT-3850 (IC-548384 X Chandrahasini) with $\chi 2 = 12.432$) at p < 0.05 and p < 0.01probability level in the F3 population. Complete homogeneity for alleles of either parent, suggesting that F3 populations are true representatives of the normal gametic constitution in F2. It indicated that allelic contribution both parents in each F3 populations are equal, followed Mendelian fashion of inheritance. Hence, derivatives generated are equally contributed by both parental genomes.

Acknowledgements

We acknowledge vice Chancellor, DRS, DI, HoD of Genetics and Plant Breeding, CoA, IGKV, Raipur, C.G. for supporting, allowing for the research work and fellowship. We thank to Director and HRD of ICAR-NRRI, Cuttack for allowing carrying out research work.

References

- 1. Forrester JV, Dick AD, McMenamin PG, Roberts F, Pearlman E. The eye e-book: basic sciences in practice. Elsevier Health Sciences; c2020.
- 2. Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD. Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare). Genome. 1991;34:437-447.
- 3. Manninen OM. Associations between anther-culture response and molecular markers on chromosomes 2H, 3H and 4H of barley (*Hordeum vulgare* L.) Theor Appl Genet. 2000;100:57-62.
- 4. Mason AS. Challenges of genotyping polyploid species. Plant Genotyping; c2015. p. 161-168.
- Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4325.
- 6. Qi X, Stam P, Lindhout P. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet. 1998;96:376-384.
- 7. Selvi GSA, Hittalmani S, Uday G. Root QTL pyramiding through marker-assisted selection for enhanced grain yield under low moisture stress in rice (*Oryza sativa* L.). Journal of Rice Research. 2015;4(1):1-5.

The Pharma Innovation Journal

- Shivani D, Suman K, Madhubabu P, Rathod R, Cheralu C, Shankar VG, *et al.* Parental polymorphism in iron-and zinc-rich rice varieties (Swarna and type 3) Using ssr markers. Applied Biological Research. 2020;22(1):69-75.
- Wang C, Zhu C, Zhai H, Wan J. Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (*Oryza sativa* L.). Genet. Res., Camb. 2005;86:97-106.
- 10. Xu SJ, Singh RJ, Hymowitz T. Establishment of a cytogenetic map of the soybean: progress and prospective. Soybean Genetics. 1997;65:411-16.
- 11. Zamir D, Tadmor Y. Unequal segregation of nuclear genes in plants. Bot Gaz. 1986;147(3):355-358.
- 12. Fisher RA. The use of multiple measurements in taxonomic problems. Annals of eugenics. 1936 Sep;7(2):179-188.
- Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL. Visible to infrared luminescence from a 28-atom gold cluster. The Journal of Physical Chemistry B. 2002 Apr 4;106(13):3410-3415.