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Abstract

Lumpy skin disease (LSD) is a viral transboundary disease caused by lumpy skin disease virus (LSDV), 

a member of Capripoxvirus genus of Poxviridae family. This disease was known to be once endemic in 

Saharan regions of Africa but later, reported in central Asian and neighbouring countries like Pakistan, 

India, Iran and China. This disease continuously spreading from region to region before vaccination 

campaigns took their full effect, mainly showing seasonal patterns despite implementing control and 

eradication measures. Within a short period of time this disease spreads to several hundred kilometers 

away from initial outbreak sites. LSDV spreads to long distance by the movement of infected animals, 

but different seasonal patterns indicating that an arthropod-borne transmission is most likely responsible 

for aggressive short-distance spread of the disease. Due to this reasons scientific interest is renewed 

resulting in the initiation of novel research into broad aspects of the disease, including epidemiology, 

modes of transmission and associated risk factors. It is a vector borne disease with high morbidity and 

low mortality. Arthropod-borne mechanical transmission is considered primary and the most common 

route. The virus is transmitted to susceptible hosts by blood-sucking arthropods such as stable flies 

(Stomoxys calcitrans), mosquitoes (Aedes aegypti), and hard ticks (Rhipicephalus and Amblyomma 

species). Insects can be transstadial and transovarial. Illegal animal trade considered as other route of 

transmission, which have played a role in the emergence of LSD in countries which is earlier free from it. 

Exploring the mechanisms of transmission of LSDV will enable the development of effective actions for 

containment and eradication of the virus. From the new evidence it is suggested that synanthropic house 

fly, Musca domestica, may also play a role in LSDV transmission, but this has not yet been tested in a 

clinical setting. The objective of this review is to discuss earlier as well as the most recent research data 

on LSDV transmission 

Keywords: LSDV, transboundary spread, non-vector transmission, arthropod transmission, 

tick transmission

Introduction 

Lumpy skin disease (LSD) is a trans-boundary disease. Earlier LSD was restricted to Sub-

Saharan regions of Africa and few other countries, but now this disease spread into 

climatically new regions. So, that it is important to focus an in-depth understanding of the 

transmission mechanisms of the virus, contributing towards improved control and prevention 

of the disease. Thorough understanding of the different transmission routes, enable safer 

methods to decrease the prevalence of the disease (Sprygin et al. 2018c) [44]. 

LSD disease was first observed in Sahara regions of Africa until 1989 and later transboundary 

spread of the disease was observed in the Middle East Asia (House et al. 1990) [19]. For the first 

time the LSD outbreak was reported during 2019 in Bangladesh, India, China, and also re-

emerged in Israel (Yeruham et al. 1995; Tuppurainen & Oura, 2012 and OIE, 2017) [61, 52, 34]. 

In India the disease might have emerged from its neighbouring countries and reported for the 

first time in 2019 (Sudhakar et al. 2019 and Kumar et al. 2021) [46, 24].  

LSD is caused by the lumpy skin disease virus (LSDV) that belongs to the Capripox virus 

genus, subfamily Chordopoxvirinae, family Poxviridae. LSD is known by various names such 

as knopvelsiekte, pseudourticaria, exanthema nodularis bovis and Neethling virus disease (Al-

Salihi, 2014 and Tuppurainen et al. 2017) [3, 56]. LSDV is a brick shaped, enveloped, double 

stranded DNA virus with complex symmetry. The LSDV genome is 151 kbp in length 

(Tulman et al. 2001 and Lojkic et al. 2018) [49, 25]. This virus contains 30 structural and non-

structural genes, shares antigenic similarity with two other Capri poxviruses, Sheeppox virus 

(SPV) and Goatpox virus (GPV) which cause devastating disease in sheep and goats 

respectively (Abutarbush & Tuppurainen, 2018) [1]. 

LSD is mainly limited to Cattle (Bos indicus and Bos taurus) and buffalo (Bubalus bubalis). 

Indigenous cattle breeds were resistant compared to Bos taurus.
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All age group animals were susceptible but calves are more 

susceptible and they develop lesions within 24 to 48 h of 

infection (Al-Salihi, 2014) [3]. Wild animals are resistant to 

infection under natural conditions, but experimental infection 

produced clinical lesions in Giraffe and impala, Arabian oryx, 

springbok and Thomson’s gazelle (Davies, 1991 and Padilla 

et al.2005) [11, 36]. The incubation period of LSD is 4–12 days 

and clinical signs start with fever (40–41.5 °C) which lasts for 

1–3 days (Woods, 1998) [60]. This is followed by increased 

nasal and pharyngeal secretions, lachrymation, Enlargement 

of lymph nodes, anorexia, dysgalactia and disinclination to 

move (Tasioudi et al. 2015) [47]. Animals affected with LSD 

show a characteristic nodular lesion and they may 

occasionally be associated with systemic signs (Gupta et al. 

2020) [18]. 

LSDV is known for their ability to use various direct or 

indirect means to infect their susceptible hosts, such as 

through direct contact, via exposure to aerosols produced by 

infected hosts, through semen or via intrauterine infection. 

Transmission of this virus can also occur indirectly via a 

contaminated environment, fomites, or vectors. Transmission 

pathways may vary between different genera of the 

Poxviridae family and also within a genus, as exemplified by 

Capripoxviruses (Sprygin et al. 2019) [45]. 

LSDV seasonal outbreaks increased suspicions, that local 

dissemination of virus is associated with the activity and 

abundance of vectors (Weiss, 1968) [58]. Slow reporting of the 

disease by farmers facilitated the rapid spread of the virus, 

which in turn delays the implementation of control measures 

(Ince et al. 2016) [20]. From the recent epidemiological study 

of LSD outbreaks in Russia, three cases were identified which 

occurred more than 800 km away from the outbreak 

Epicenter, thus suggests vehicle-assisted transport of infected 

animals (Sprygin et al. 2018a) [42]. 

When infected animal introduced into a new region, the virus 

needs effective dissemination to the susceptible cattle in 

nearby farms or environments for an outbreak to initiate and 

manifest. The data collected during LSD outbreaks in the 

Balkan indicate that short-distance spread which is 

approximately 7.3 km per week, and is associated with cattle 

movements and presence of vectors (Mercier et al. 2018) [33]. 

Strict quarantine of newly introduced animals, control of 

vector and prophylactic vaccine are effective strategies for 

limiting the risk factors of the disease. Future studies would 

be directed towards determining the true burden of LSD on 

livestock. The objective of this review is to summarize the 

current knowledge on transmission of LSDV obtained from 

the field and experimental studies and also identify areas in 

which further research is still required.  

 

Non-vector transmission 
LSD is a transboundary disease. Animals infected with the 

LSDV can spread it directly or indirectly. Detection of this 

virus in India and neighbouring countries where this disease 

was non-existent signifies the importance of understanding its 

transmission mode. Epidemiology of LSD virus and its 

possible routes of transmission have been documented by 

Carn and Kitching, 1995 [9] and Sprygin and co-workers 

reviewed these findings (Sprygin et al. 2019) [45]. 

Transmission of LSDV through direct contact shown to be an 

ineffective route of transmission, but correct experimental 

reports were less. Early experimental work and field 

observations in South Africa led to the conclusion that direct 

contact transmission of LSDV occurs at low rates and 

efficiency (Weiss, 1968 and Diesel, 1949) [58, 12]. This is 

supported by observations of LSD outbreaks occur outside the 

window of optimal insect activity temperatures (WAHID, 

2018) [59]. However, risk of LSD outbreaks increases after 

introduction of new animals into a herd and sharing of water 

sources (MacOwan, 1959) [31]. Although these early 

observations are accurate, they are mainly based on clinical 

signs. Diagnostic methods available in earlier days were of 

relatively less sensitivity compared to modern molecular 

techniques available today. Mathematical model was used by 

the researchers to investigate different modes of transmission 

of LSDV, during an outbreak on a dairy farm in Israel in 2006 

(Magori-Cohen et al. 2012) [32] and concluded that direct 

contact of animals did not play a significant role in 

transmission because no positive correlation was found 

between cattle density and infection rates. Whereas the 

observed pattern of spread was explainable by indirect 

transmission, probably by bloodsucking insects (Magori-

Cohen et al. 2012) [32]. 

For the members of the Capripoxvirus genus, Sheeppox (SPP) 

and Goatpox (GTP) viruses, direct contact with virus-

containing droplets and aerosols is an important route of virus 

dissemination (Carn and Kitching, 1995) [9]. Indirect LSDV 

transmission might occur when infected animals share feed or 

water troughs contaminated by nasal discharge or sailva with 

healthy animals (Weiss, 1968 and Ali et al. 2012) [58, 4]. 

Babiuk and co-workers reported that low levels of virus in 

oral and nasal secretions, 12–18 days post-infection. 

However, high virus loads were found in the mucous 

membranes of the mouth and nose comparable to those of 

skin lesions (Babiuk et al. 2008) [6].  

Prozesky and Barnard demonstrated several lesions in the 

mouth, nostrils, pharynx, larynx, and trachea characterized by 

erosion and ulceration in severely infected animals (Prozesky 

and Bernard, 1982) [38]. These erosions and ulcerations are 

virus sources into the saliva and nasal discharge of severely 

infected animal and infectious viruses are likely to persist in 

aerosols and droplets originating from these animals. 

However, saliva and nasal swabs are good sampling materials, 

equal to those obtained from the skin (Dietze et al. 2018) [13]. 

Nasal or other discharges with low virus titres are indeed 

likely to lower the risk of contact transmission, so there is a 

need to re-investigate the direct mode of transmission as it 

pertains to spread of LSDV.  

Recently Rouby and Aboulsoud, 2016 documented 

intrauterine transmission of LSDV (Rouby and Aboulsoud, 

2016) [39]. Tuppurainen and coworkers, 2017 reported LSDV 

transmission from mother to calf via contaminated milk or 

skin lesions on the mother’s udder and teats are also likely to 

occur but there is a need to experimentally confirm this 

assumption (Tuppurainen et al. 2017) [56]. 

Weiss, 1968 isolated LSDV from the semen of 

experimentally-infected bulls 22 days post-infection (dpi) 

(Weiss, 1968) [58]. Recent study detected the persistence of 

live virus and viral DNA in bovine semen for up to 42 dpi, 

and 159 dpi (Irons et al. 2005) [21]. Experimentally 

demonstrated that the transmission of virus via contaminated 

bovine semen (Annandale et al. 2014) [5]. Artificial 

insemination or natural mating should be considered as risk 

factors for transmission during an outbreak. Vaccination using 

a homologous vaccine eliminate the virus from semen, and 

the vaccine virus was also not detected in semen samples 

(Osuagwuh et al. 2007) [35]. 

Intradermal inoculation trials of LSDV in cattle was 

performed by Carn and Kitching and found that less than 20% 

of cases show generalized disease, whereas the remaining 
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animals exhibited only localized disease. In contrast, the 

intravenous route of LSDV inoculation produced 70% of 

animals with generalized disease. Infection was not achieved 

through the conjunctival sac, in a trial conducted on only two 

experimental animals (Carn and Kitching, 1995) [9]. These 

findings suggests that a successful infection cycle requires 

after inoculation into the bloodstream, which is a typical route 

in insects feeding from the lumen of a blood vessel. During 

vaccination programmes transmission of LSDV by 

contaminated needles is a potential mechanism for the spread 

of infection within the herd (Tuppurainen et al. 2017) [56]. 

When a vaccine virus is inoculated into an already infected 

animal, the natural infection even becomes worse.  

After observing these reports further transmission studies are 

required to understand the role of direct contact and also for 

detecting subclinical infections. Sensitive molecular methods 

for detecting viral antigens, highly virulent field strain LSDV, 

duration of the experiment and sufficient numbers of 

experimental animals are required to make those studies 

relevant. 

 

Arthropod transmission  

Mechanical transmission by arthropod vectors have been 

reported for several Poxviruses, such as Fowl pox (Brody, 

1936) [7], myxoma (Fenner et al. 1952) [14], and Swinepox 

viruses (Tripathy et al. 1981) [48]. Rabbit fibroma virus is 

transmitted mechanically by mosquitoes, fleas and other 

biting arthropods (Kilham and Dalmat, 1955) [23]. 

Transmission of virus in all these cases associated with the 

arthropod’s mouthparts and head region, but not its body. 

The competence of vector depends on, but is not limited to the 

frequency of biting habits, vector abundance, and host 

availability (Kahana-Sutin et al. 2017) [22]. In cattle after 

inoculation of virulent virus at high titres via both intravenous 

and intradermal routes, only 70% of the animals typically 

develop a severe clinical disease, (Carn and Kitching, 1995 

and Tuppurainen et al. 2005) [9, 50]. Successful mechanical 

transmission probably requires tens or hundreds of bites from 

blood-feeding vectors, to pass on the virus contained in their 

contaminated mouthparts.  

A general prerequisite for an arthropod, as a mechanical 

vector is its presence in high numbers at an outbreak site 

(Kahana-Sutin et al. 2017) [22]. Insects which feeds directly 

from blood vessels, the level of viremia in LSD infected host 

is usually low, and viraemic stage lasts for less than 12 days 

(Tuppurainen et al. 2005) [50]. These insects inoculate the 

virus directly into the blood stream increasing their 

infectivity. Mosquitoes were present in high numbers where 

the first European LSD outbreaks were detected in 2015 

(Tasioudi et al. 2015) [47], however outbreaks also reported 

other than the vector prevalence period (May to August), 

arguing for another yet overlooked means of transmission 

(WAHID, 2018) [59]. Skin lesions of severely infected animals 

contain high titres of virus which act as a source of 

contamination for blood sucking arthropods vector (Babiuk et 

al. 2008) [6].  

The most widely suspected vector species for LSDV spread is 

stable fly (S. calcitrans) (Yeruham et al. 1995; Prozesky and 

Bernard, 1982; Dietze et al. 2018 and Aboulsoud, 2016) [13, 38, 

61]. Stable flies are persistent feeders and aggressive, feeding 

is often interrupted by the host, due to their painful bites 

requiring flies to continue feeding on another host. Due to 

this, stable flies usually require three to five feeding attempts 

to achieve satiety (Irons et al. 2005 and Schofield and Torr, 

2002) [21, 41]. Isolation and identification of live virus using 

PCR from stable flies either directly or 24 h post-feeding on 

infected cattle (Weiss, 1968 and Annandale et al. 2014) [58, 5], 

and still the actual transmission of LSDV by this vector 

remains to be conclusively demonstrated in an experimental 

setting. 

The LSD outbreak in Peduyim, Israel, in 1989, suggested that 

the infection originated from a concurrent outbreak in 

Ismailiya, which is located over 85 kms away or in northern 

Sinai, Egypt. It was suspected that the virus was introduced 

by contaminated stable flies, carried by prevailing winds or 

inside cattle transport vehicles (Yeruham et al. 1995) [61]. 

In another study from Israeli, LSD outbreaks on dairy farms 

correlated with a high relative abundance of stable flies in 

November-January and March-April 2012–2013 (Rouby and 

Aboulsoud, 2016) [39]. Even though the numbers of S. 

calcitrans dropped between October and November, LSD was 

detected in adjacent beef herds. Other vectors, such as a horn 

fly, Haematobia irritans, could have played a role in 

transmitting the virus. This suggestion was based on the 

observation of abundant fly populations in areas where beef 

cattle were being kept (Rouby and Aboulsoud, 2016) [39]. 

Thus, the role of horn flies in the mechanical transmission of 

LSDV should also be examined in an experimental setting. 

The Musca domestica, house fly seems to be capable in 

transmission of numerous viral and bacterial pathogens of 

livestock (Pitkin et al. 2009) [37]. The proboscises of non-

biting flies gets contaminated after feeding on well-developed 

skin lesions in myxomatosis-affected rabbits, these insects are 

able to transfer the disease-causing pathogen (Fenner et 

al.1952) [14]. Non-biting flies could also act as vectors by 

feeding on the carcasses of cattle which have recently died of 

LSD or were culled due to LSD, thereby taking up the virus 

from open skin lesions or body fluids containing high virus 

titres (Sprygin et al. 2018b) [43]. Biomya fasciata, a non-biting 

fly, has been implicated as a one of the vector for LSDV. This 

virus was isolated from flies collected from infected cattle in 

the field, as well as three days after being artificially fed 

virus-spiked blood (Weiss, 1968) [58]. M. domestica 

ubiquitous, synanthropic houseflies, tested positive for the 

presence of vaccine-like LSDV genomic DNA during an LSD 

outbreak in Russia in 2017 (Sprygin et al. 2018a) [42].  

Mechanical transmission of the LSDV by Aedes aegypti 

mosquitoes (Chihota et al. 2001) [10] and some African hard 

tick species has been reported (Tuppurainen et al. 2011) [51]. 

Recently, there is an evidence on the potential role of non-

biting flies has been presented (Sprygin et al. 2018b) [43]. 

Mosquitoes were suspected to play a role in LSD 

transmission, Burdin reported, that a high incidence of Aedes 

natronius and Culex mirificus mosquitoes were associated 

with LSD outbreaks in Kenya (Burdin, 1959) [8]. Culex 

quinquefasciatus and Anopheles stephensi Liston mosquitoes 

failed to transmit the virus experimentally but had tested 

positive for LSDV using PCR, a few days after feeding on 

infected animals (Annandale et al. 2014) [5]. 

Mosquitoes and Sandflies can intravenously inject LSDV 

(Carn and Kitching, 1995) [9]. Aedes aegypti mosquitoes after 

feeding on LSDV-rich skin lesions, were shown to transfer 

the virus to susceptible cattle over a period of two to six days 

(Chihota et al. 2001) [10]. Regardless of the titre of the virus in 

the blood that mosquitoes imbibed, the efficiency of 

transmission differs among mosquito species (Gray and 

Banerjee, 1999) [17]. 

Friedberg reported that horse (Tabanidae), horn (Haematobia 
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irritans), and louse (Hippoboscidae) flies may act as potential 

vectors for several diseases in Israel, and LSD viral DNA has 

been isolated from Tabanus spodopterus females (Friedberg, 

1985 and Alexandrov, 2016) [15, 2]. 

Systematic surveillance of the activity levels of suspected 

vector species would provide essential data for risk 

assessment. Currently several research projects investigating 

on potential vectors for LSDV, and next coming years these 

could lead to increase in our understanding of the vector 

transmission of LSDV. 

 

Tick transmission 

LSDV transmission from infected to naïve hosts 

experimentally demonstrated in male ticks of Rhipicephalus 

appendiculatus (Tuuppurainen et al. 2013a) [51] and 

Amblyomma hebraeum (Lubinga et al. 2013) [26]. Lubinga and 

coworkers in 2014 used immunohistochemical methods to 

detect LSD viral antigen in tick salivary glands, hemocytes, 

synganglia, ovaries, testes, fat bodies, and midgut (Lubinga et 

al. 2014a) [27]. LSDV demonstrated in tick saliva after feeding 

on infected cattle (Lubinga et al. 2013) [26], and transstadial 

transmission of the virus has also been reported (Lubinga et 

al. 2014b) [28]. Lifecycle of Rhipicephalus decoloratus occur 

on the same host as it is a one host tick. Females were able to 

transmit LSDV to the next generation of larvae, through their 

eggs after feeding on infected cattle which in turn were able 

to infect healthy cattle (Tuppurainen et al. 2013b) [54]. Further 

investigation is necessary to know the exact mechanism of 

transmission of LSDV as it is very stable (Tuppurainen et al. 

2015) [55]. Transovarian transmission of LSDV in ticks 

following exposure to cold temperatures that imitate natural 

overwintering conditions (Lubinga et al. 2015 and Lubinga et 

al. 2014c) [30, 29].  

Mouthparts of male gets contaminated with the virus after 

interrupted feeding on the skin of an infected animal. Since 

semen sack of male is placed into the females genital 

openings with its mouthparts it also contaminates the female 

during copulation (Varma, 1993) [57]. Rouby and coworkers 

reported similar type of transmission, engorged R. annulatus 

ticks were collected in the field from LSDV-infected cattle 

and females were allowed to oviposit. Then live virus was 

isolated from larvae on chorioallantoic membranes of 

embryonated hen eggs (Rouby et al. 2017) [40]. 13 species of 

Ixodid ticks were detected during the recent outbreaks of LSD 

in the northern hemisphere of the Republic of Dagestan and 

Kabardino-Balkaria in Russia, which belongs to six genera. 

Genome of the LSDV was frequently detected in Ixodes 

ricinus (16.3% of ticks tested), Boophilus annulatus (14.3%), 

Dermacentor marginatus (13.8), Hyalomma marginatum 

(11.6%) and Haemaphysalis scupense (8.1%). This data led to 

the conclusion that during 2015 outbreaks Ixodid ticks played 

role as vectors for LSDV, but more detailed studies were 

required to confirm these tentative findings (Gazimagomedov 

et al. 2017) [16]. In Hyalomma marginatum females and 

Rhipicephalus bursa males and females LSDV DNA was 

detected during surveillance in Bulgaria (Alexandrov, 2016) 
[2].  

The outbreaks of LSD have led to an increase in research on 

potential arthropod vectors of LSDV. The vector capacity and 

potential role of ticks as reservoirs of LSDV were understood 

fully by further studies in an experimental environment. 

 

Conclusion 

Cattle and buffaloes are the most important domestic 

livestock group of animals contributing substantially to the 

world economy. Earlier LSD was known to be endemic in 

Saharan regions of Africa and few other countries. But the 

recent spread of this disease to previously disease-free region 

like India and other Asian countries, which is a matter of 

concern for the livestock rearing sector as most of these 

countries’ economies were of agriculture-based. Now in 

developing countries like India, there is a demand for research 

on this quickly growing virus. Extra efforts should be made to 

know the function of vectors those responsible for spread of 

LSDV. To some extent livestock services are affected by 

recent pandemic and this climatic change favours the vectors 

to spread in fresh areas. Large-scale transboundary 

dissemination of LSDV can be prevented by detailed 

understanding of the various transmission mechanisms and 

role of local vector species. This would assist in limiting the 

spread of the disease at a very early stage. In case of an 

outbreak this data could help farmers to implement 

biosecurity measures to protect their livestock. Most of the 

literature suggests that arthropod transmission of LSDV is the 

effective strategy by which the virus spreads and climate 

change favours the expansion of vectors in different newer 

regions thus seasonality of outbreaks observed. Animal 

movements considered as one of the reason for the long 

distance spread of this virus. LSDV vectoring potential of 

abundant ticks, flies etc., associated with cattle should be 

evaluated. New vectors that harbours the virus to be 

discovered. 

LSD outbreaks may also occur in areas with no vectors, this 

suggests that vector-borne transmission is not the only mode 

of LSDV transmission. No season considered as safe with 

respect to spread of LSD. 

An in depth understanding of feeding habits, survival of virus 

in those vector could allow veterinary authorities to develop 

effective strategies for control and prevent spread of LSDV. 

Further science based investigation required to know the role 

of vector saliva, the survival time of LSDV in their 

mouthparts or salivary glands, duration of time in which 

mechanical vectors remain infective and the number of insects 

or biting flies required to transmit infection present among 

nations and their potential role in disease transmission. Strict 

vector control might be one of the method to control this 

disease. 
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