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Abstract 
Knowledge of watershed geometry and geomorphic condition is a prerequisite for developing a 

watershed management plan. use of morphometric analysis has increased significantly in studies dealing 

with watershed management mainly for the identification of natural drainage systems and prioritization 

of sub-watersheds. This study employed morphometric analysis and introduced a hybrid model by 

integrating geo-informatics and multivariate statistical Modeling to identify the most significant erosion-

prone morphometric parameters and prioritize the sub-watersheds of the Hathmati River watershed in 

Sabarkantha district of Gujarat. This study applied two statistical methods, i.e., principal component 

analysis (PCA) and PCA's weighted sum model (PCA-WSM) based on correlation matrix approach, to 

prioritise the sub-watersheds. Boundaries of the sub-watersheds and drainage network were determined 

in geographic information system using digital elevation model. Then, PCA was applied to define the 

significant morphometric parameters, while the WSA was employed to determine the weights for the 

significant parameters and calculate the compound values for priority ranking. During prioritization of 

sub-watersheds using compound factor values, higher priority was assigned to sub watersheds which 

yielded lowest compound factor and vice-versa. The drainage density varies from 0.41 km2/km-1 to 1.14 

km2/km-1, it is observed that the higher density for the sub watershed SW7 and lower for the SW1. the 

higher drainage density indicates high runoff potential. Sub-watersheds SW6 to SW7 covering an area of 

405 km2 were noted to have highest priorities for soil erosion conservation measures; SW2, SW3 and 

SW4 had medium priorities; and SW1, and SW5 were assessed with lowest priorities. and the results 

showed that the integration of PCA and WSA was robust enough to define the significant and most 

effective parameters with their weighted values for the sub-watershed prioritization. It is anticipated that 

the prioritization of sub-watersheds would be useful to planners, decision makers, and relevant 

stakeholders for implementation of soil and water conservation interventions for sustainable natural 

resources management within watershed. 

 

Keywords: Geographic information system, morphometric analysis, principal component analysis, 

weighted sum model, sub-watershed prioritization 

 

Introduction 
Preservation of natural resources, such as land and water, is the ultimate goal of any watershed 
planning and management activity (Tomer 2014) [51]. Watershed management is becoming 
more crucial in conservation planning as a result of the depletion of the watershed resources 
caused by multiple natural and man-made activities. The world's food production systems are 
also under peril as aquifers continue to dry up and demands for groundwater increase every 
day. Also, the significant climatic extremes or hazards led to desertification, drought, and land 
subsidence. Morphometric analysis is the quantitative measurement of the earth's surface, 
which assist in the comprehension of a variety of concepts, including drainage basins, 
geomorphology, mass movements, natural hazards, the development of erosion, etc (Mahmood 
and Gloaguen, 2012) [20]. The morphometric technique, which uses several indices such as 
linear, areal, and relief morphometry, is one of the ways to comprehend the hydrological status 
or flood potential in the drainage basin (Diakakis, 2011, Biswas et al., 2014) [10, 4]. Studies 
related to the quantification of drainage basin morphometric parameters are well established in 
the literature (Horton, 1945; Poyraz et al., 2011; Markose et al., 2014; Abdoud & Nofal, 2017; 
Saha et al., 2017; Resmi et al.,) 2019) [14, 34, 22, 1, 41, 40]. Understanding the various aspects and 
characteristics of the basin's hydrological system, particularly its rivers, depends heavily on 
morphometric studies of drainage basins (Dubey et al., 2015; Saha et al., 2017; Strahler, 1964) 
[11, 41, 47]. 
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Understanding the processes that shape the earth's surface 

requires the application of morphometric analyses, which are 

quantitative and mathematical explanations of earth's physical 

characteristics (Clarke, 1966; Saha et al., 2017) [7, 41]. 

Therefore, the quantitative analyses of the basin’s 

morphometric variables are important in understanding the 

morpho dynamics of the basin’s resource potentials 

(Rajasekhar et al., 2020; Resmi et al., 2019) [38, 40], structural 

and tectonic disturbances (Pophrae & Balpande, 2014) [33], 

possibilities of flood hazard evaluation (Resmi et al., 2019; 

Seta et al., 2005) [40, 44], Understanding the interactions 

between the basin's geology, geomorphology, and climate is 

important for determining erosion intensity and rates (e.g., 

Gardiner, 1990; Ozdemir & Bird, 2009). (e.g., Magesh et al., 

2011; Resmi et al., 2019; Singh et al., 2014) [19, 40, 45]. 

Quantitative morphometric analysis of a basin requires 

measurements of the linear, relief/aerial, and gradient of the 

channel network as well as the evaluation/measurement of 

drainage density, network diameter, basin area, etc. These 

measurements are now being made in a GIS environment, 

which is different from the traditional methods (e.g., Mesa, 

2006; Rai et al., 2017; Rajasekhar et al., 2020; Resmi et al.) 
[25, 37, 38, 40] (Horton, 1945; Strahler, 1952, 1964) [14, 47]. In this 

study, GIS-based morphometric analyses have been 

performed and compared with results abtained from the PCA 

based analysis for sub watershed prioritization 

The main objective of the current study is to assess the 

morphometric characteristics of the Hathmati River watershed 

in the Sabarmati basin, which is Gujarat state's one of the 

hottest and wettest (due to the influence of South-West 

monsoon) regions due to its location in the subtropical climate 

zone (Dave H.K 2012) [9]. It is one of the major left-bank 

tributaries of the Sabarmati River. the major source of 

irrigation water supply to agricultural land which is the 

predominant land use land cover present in the study area. In 

this regard, the sub-watershed have quantified and 

morphometric properties were calculated in terms of linear, 

relief, and areal morphometry.  

 

Materials and Methods 

Description of the study area 

The Hathmati River watershed (1309.15km2) has been 

selected for the study and the location map is shown in Fig. 1. 

It is located between the longitudes of 23° 50'40" and 24° 

02'00" North and latitudes of 72° 44'51" and 73° 15'04" East. 

The Hathmati is one of the major Left bank tributaries of 

Sabarmati River located in western India. It originates in 

Gujarat State's southwest foothills of the Rajasthan range and 

travels in a southwest direction after travelling a course of 122 

km before meeting the Sabarmati on its left bank. The Guhai 

river is a sub-tributary of Hathmati River. The spatial 

variation in the rainfall is highest for Hathmati basin amongst 

all sub-basins of Sabarmati basin (Dave 2012) [9]. It lies in 

Bhiloda (Sabarkantha district) and rises from Gujarat Malwa 

Hills. It is considered a hot arid/semi-arid region in western 

India and experiences hot summer from (March to mid-June 

with three seasons, the monsoon (kharif, between late June to 

October), the cooler rabi (November to February) which is 

dry except occasional rain in November and in the coastal 

region, and the hot summer season. The rainfall occurs almost 

entirely in monsoon months (June to September), which 

receives an average annual rainfall of 864 mm. The maximum 

dry temperature ranges between 42 °C and 45 °C, which is 

due to tropical monsoon climate (Dave 2012) [9]. The 

temperature increases from January onwards having 

maximum values during May and gradually decreases 

afterwards. The wind direction is predominantly towards the 

northeast during the months November to March (www.india-

wris.nrsc.gov.in). 

 

 
 

Fig 1: Map of the study area 
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Data Used 

The sub-watershed boundaries and drainage networks of the 

study area were identified and extracted using the SRTM-

DEM (Fig. 1), which was downloaded in GeoTIFF format 

with a spatial resolution of 30 m from the USGS Earth 

Explorer online database. This was done in order to carry out 

the morphometric study. Singh et al. (2014) [45] claims that 

DEM-based hydrological evaluation at the watershed size is 

more practical and accurate than other methods currently in 

use. The following step-by-step process for extraction of 

stream network and sub watershed delineation, as depicted in 

Fig. 2, was obtained from the "Arc Hydro Tools Tutorial" 

manual and used with the Arc Hydro tool in ArcGIS 10.4.1. 

(ESRI 2009) 

 

Geomorphometric analysis 

Morphometric studies were conducted to evaluate the overall 

geometry and features of the Hathmati River SWS. The 

fundamental parameters, namely, the stream order (u), 

number of streams (Nu), stream length (Lu), area (A), 

perimeter (P), basin length (Lb), and total relief (Rt) were 

directly obtained from the drainage map, sub-watershed map, 

and DEM in the GIS environment, respectively. Later, 

conventional formulas established by Horton (1932, 1945) [13, 

14], Smith (1950) [46], Miller (1953) [27], Schumm (1956) [42, 43], 

Melton (1957) [23], Nooka Ratnam et al. (2005) [28], Strahler 

(1964) [47] were utilized to determine the linear, areal, shape, 

and relief features of the examined watershed using these 

fundamental parameters. In this present study, mean stream 

length (Lsm), stream length ratio (RL), bifurcation ratio (Rb), 

RHO coefficient (RHO), length of overland flow (Lg) were 

computed using Eqs. (i), (ii), (iii), (iv), and (v) respectively 

(Table 1) and clustered into linear parameters. Stream 

frequency (Fs), drainage density (Dd), drainage texture (T), 

drainage texture ratio (Dt) were computed using Eqs. (vi), 

(vii), (viii), (ix) respectively (Table 1) and grouped as the 

areal morphometric parameter. Basin shape (Bs), form factor 

(Ff), circularity ratio (Rc), elongation ratio (Re), compactness 

constant (Cc) were computed using Eqs. (x), (xi), (xii), (xiii), 

(xiv), respectively (Table 1) and clustered into shape 

morphometric parameters. The formula (Eq. i to xiv) are 

given in Table 1 and the calculated results of the 

morphometric study are shown in Table 2 (linear MPs), Table 

3 (linear MPs), and Table 4 (areal and shape MPs). suggested 

by Hotelling (1933) [15]. PCA is a widely used data 

transformation method for streamlining the complexity of 

multidimensional data. It identifies the variance within a 

dataset of inter-correlated variables in terms of two or more 

new pseudo-variables also known as principal components 

(PCs) (Syms 2019) [48] which were uncorrelated and 

orthogonal to each other and arranged according to their 

relative significance. This method can be the best possible 

approach to simplify the relations among the geo- 

morphometric features as well as to find the most significant 

parameters in the sub-watershed scale. Following five simple 

steps were considered to run the PCA model in the present 

study (also shown in Fig. 2 

 

PCA-Based SWS Prioritization 
Pearson (1901) [32] established the principal components, or 

component analysis, as a statistical method. Hotelling then 

proposed it (1933) [15]. The complexity of multidimensional 

data is reduced via the widely used data processing method 

known as PCA. The variance of an intercorrelated dataset of 

variables is calculated in terms of two or more additional 

pseudo-variables, also known as principle components (PCs) 

(Syms 2019) [48], which were uncorrelated, orthogonal to one 

another, and organized according to their relative 

significance. This technique might be the most effective way 

to locate the most important sub-watershed scale parameters 

as well as to simplify the relationships between the 

geomorphometric characteristics. The PCA model depicted in 

Fig. 2: Following the steps outlined in the IBM-SPSS 

Statistics guide, all of these mathematical procedures were 

completed using the software interface of IBM SPSS v26.0 

(George and Mallery 2019) [12]. Assigning a preliminary 

priority rating to the most important EPMPs generated from 

the Varimax-rotated matrix was the first step in conducting 

PCA-based SWS prioritization analysis. In this study, the 

preliminary priority ranks were assigned based on the relative 

significance of morphometric parameters to soil erosion 

potential as stated by Nooka Ratnam et al. (2005) [28], Aher et 

al. (2014) [2], Prasad and Pani (2017) [35], Malik et al. (2019) 
[21], Pathare and Pathare (2020) [31], and Kumar et al. (2021) 
[17]. These earlier researches proposed that the linear and areal 

parameters (i.e., Rb, Lg, Dd, T, Dt, and Fs) were directly 

proportional to runoff and soil erosion potential and were 

ranked in such a way that the highest value of these 

morphometric parameters was rated as rank 1, and next 

highest value was assigned rank 2 and so on. On the other 

hand, the shape parameters (i.e. Rc, Re, Bs, and Ff) showed an 

inverse relation with runoff as well as soil erosion potential. 

As a result, the preliminary priority rank of this group of 

parameters was assigned in such a way that parameters with 

the lowest value received the first rank, and the rest of the 

ordering followed suit. Finally, the PCA-based compound 

factors (CF) of each SWS were calculated using Eq. (xv). The 

SWS that achieved the minimum CF value was received the 

highest priority and the maximum value received the least 

priority. And compound factor (CF) assessment can be 

expressed by Eq. (xvi) (modified after Aher et al. 2014; Malik 

et al. 2019) [2, 21] 

 

CF =
sum of all the preliminary ranks of most significant EPMPs suggested by PCA

The total number of most significant EPMPs suggested by PCA
 (i) 

 

CF = PPREPMPs × WEPMPs     (ii) 

 

Here PPREPMPs denote the weighted factors of each erosion-

prone morphometric parameter (EPMP) obtained from the 

cross-correlation analysis are used to rank the EPMPs in order 

of preliminary priority. The Hathmati River SWS's ultimate 

priority ranking was established based on CF in such a way 

that the lowest value of the compound factor was given the 

top priority rank, the next lowest value was given the second 

priority rank, and so on. 

Additionally, the SWS were roughly considered into three 

priority zones, such as high, medium, and low priority zones, 

depending on their CF values (derived from PCA and PCA-

WSM). The outcomes of the above two procedures were 

compared in order to evaluate erosion-prone sites for efficient 

conservation planning and management techniques. By 

choosing the common SWS that falls within each priority 

zone, this produced a final ranking of the SWS.
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Fig 2: Shows a detailed work flow diagram of the current study's approach for extracting drainage lines, defining watersheds, and SWS 

prioritization 

 
Table 1: Formulae were used for computation of morphometric parameters of the Hathmati River sub-watersheds 

 

Morphologic parameters Formula References 
Eq. 

no. 

Linear parameters 

Stream order (u) Hierarchical rank Strahler (1964) [47] 
 

Stream number (Nu) Total number of stream segments of order 'u' (Calculated from drainage map) Strahler (1964) [47] 
 

Stream length (Lu) Total length of stream segments of order 'u' (Calculated from drainage map) Horton (1945) [14] 
 

Mean stream length (Lsm) Lsm =Lu/Nu Strahler (1964) [47] i 

Stream length ratio (RL) RL=Lu/Lu-1 Horton (1945) [14] ii 

 

Where Lu=total length of stream segments of order ‘u’, Lu-1=total stream length of the 

previous lower order   

Bifurcation ratio (Rb) Rb=Nu/Nu+1 
Schumm (1956) 

[43-43] 
iii 

 

Where Nu=total number of stream segments of order ‘u’, Nu+1=number of segments of 

the next higher order   

RHO co-efficient (RHO) RHO=RL/Rb Horton (1945) [14] iv 

Length of overland flow (Lg) Lg=1/2D Horton (1945) [14] V 

Areal parameters 

Basin area (A) The area covered inside the watershed boundaries (km2) (calculated from SWS map) 
  

Perimeter (P) The perimeter of SWS (km) (calculated from SWS map) 
  

Basin length (Lb) Distance between the outlet and farthest point on the basin boundary (km) 
Nooka Ratnam et 

al. (2005) [28] 
V 

Stream frequency (Fs) Fs=∑Nu/A Horton (1945) [14] vi 

Drainage density (Dd) Dd=∑Lu/A (km/km2) Horton (1945) [14] vii 

Drainage texture (T) T=FsxDd Smith (1950) [46] viii 

Drainage texture ratio (Dt) Dt=∑Nu/P Horton (1945) [14] ix 

Shape parameters 

Basin shape (Bs) Bs=L2/A Horton (1945) [14] x 

Form factor (Ff) Ff=A/Lb
2 (Ff<1) Horton (1932) [13]  xi 

Circularity ratio (Rc) R,=4xA/P2(Rc<1) Miller (1953) [27] xii 

Elongation ratio (R) R,=1.128xA0.5/Lb (Re<1) 
Schumm (1956) 

[42-43] 
xiii 

Compactness constant (C) Cc = 0.2821 × P/A0.5 (Cc ≥ 1) Strahler (1964) [47] xiv 
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Result and Discussion 

Morphometric Characterization 

The study area covers seven sub-watersheds, labeled as SWS-

1 to SWS-7 as shown in Fig. 3a. The area of the Hathmati 

River SWS varies from 113.87 km2 (SWS-7) to 283.75 km2 

(SWS-1) (Table 4) with a total area of about 1309.15km2. The 

morphometric analysis suggests that the Hathmati is 5th order 

watershed and typically characterized by dendritic drainage 

patterns.  

 
Table 2: SWS wise stream orders and stream lengths of the study area 

 

SWS No. 

Order wise stream  

numbers (Nu) 

Total  

(Nu) 

Stream lengths (L,,) in  

km 

Total  

(Lu) 

Mean stream lengths  

(L.) in km 

1 2 3 4 5  1 2 3 4 5  1 2 3 4 5 

SWS-1 18 5 12 - - 35 73.8 12.3 31.4  - 117.5 4.1 2.5 2.6 - - 

SWS-2 25 16 7 1 - 49 66.2 51.2 9.8 0.7 - 127.9 2.6 3.2 1.4 0.7 - 

SWS-3 31 13 13 2  59 60.7 20.8 23.7 0.7 - 105.9 2.0 1.6 1.8 0.4 - 

SWS-4 68 36 17 9 4 134 97.7 43.8 21.4 11.8 3.1 177.7 1.4 1.2 1.3 1.3 0.8 

SWS-5 45 22 8 14 - 89 68.1 26.6 12.8 13.1 - 120.7 1.5 1.2 1.6 0.9 - 

SWS-6 54 21 27 1 - 103 75.7 23.2 27.3 0.6 - 126.8 1.4 1.1 1.0 0.6 - 

SWS-7 85 41 31 3 - 160 76.8 29.8 20.5 2.9 - 130.1 0.9 0.7 0.7 1.0 - 

 

The study also reveals that the SWS-6 and SWS-7 belong to 

the 5th order stream and the rest of the sub-watersheds (SWS-

3, SWS-2 SWS-1) and belong to the 4th order stream and 

SWS-5 belongs to 3rd order (Table 2). 

 
Table 3: SWS wise linear morphometric parameters of the study area 

 

SWS  

No. 

Stream length ratio (RL) 
Mean 

Ri 

Bifurcation ratio (Rb) 
Mean  

Br 

RHO co-efficient (Rho) 
Mean  

Rho 

Length of  

overland  

flow (4) 
RL1 RL2 RU RL4 RL5 Rbl Rb2 Rb? Rbs Rb5 1 2 3 4 5 

SWS-1 1.7 0.9 - - - 1.3 3.6 0.4   - 2 0.5 2.3 2.6 -  1.4 1.2 

SWS-2 0.8 2.3 2.1  - 1.7 1.6 2.3 7  - 3.6 0.5 1 0.3   0.6 0.9 

SWS-3 1.2 0.9 5 - - 2.4 2.4 1 6.5  - 3.3 0.5 0.9 0.8   0.7 0.9 

SWS-4 1.2 1 1 - - 1.2 1.9 2.1 1.9 - - 2 0.6 0.5 0.5 0.8 - 0.6 0.6 

SWS-5 1.2 0.8 1.7 - - 1.2 2 2.8 0.6 - - 1.8 0.6 0.3 3 - - 1.3 0.6 

SWS-6 1.3 1.1 1.7   1.4 2.6 0.8 27  - 10.1 0.5 1.4 0.1 -  0.7 0.6 

SWS-7 1.2 1.1 0.7 - - 1 2.1 1.3 10.3 - - 4.6 0.6 0.8 0.1 - - 0.5 0.4 

 
The mean stream length ratio (RL) varies from 1(SWS-7) to 
2.4 (SWS-3), the different SWS (i.e., SWS-1, SWS-2, SWS-3, 
and SWS-6) shows an increasing trend from lower to higher 
stream order (Table 3) reflecting the developed geomorphic 
stage of streams. While other rest of the watershed such as 
SWS-4, SWS-5, and SWS-7 which indicate the less 
developed geomorphic stage of streams. The computed mean 
Rb values range between 3 and 5, except for SWS-6 (10.1) 
(Table 3), suggesting less intervention of geologic structures 
to the stream network (Aher et al. 2014) [2]. While the higher 
value of Rb in SWS-6 suggests tectonic control on drainage 
patterns and excess overland flow. RHO is a significant 

parameter to assess the storage capacity as well as the 
physiographic growth of streams (Horton 1945) [14]. The mean 
RHO coefficient varies from 0.5 (SWS-7) to1.4 (SWS-1) 
(Table 3). The SWS with lower mean RHO values (SW-7, 6, 
2,3, and 4) store less water during floods, and as a result, 
more erosion takes place at these SWS during high discharge 
(Rama 2014). The length of the overland flow (Lg) values 
ranges between 0.4 (SWS-7) and 1.2 (SWS-1) km/km2 (Table 
3). Shorter value of Lg in SWS-7 suggest comparatively quick 
runoff process and high erosion potential than the others 
(Horton 1945) [14]. 

 

Table 4: Areal and shape morphometric parameters of the Hathmati River watersheds (SWS) 
 

SWS NO. A P Lb Fs Dd T Dt Bs Ff Re Rc Cc 

SWS-1 283.75 108.61 32.45 0.12 0.41 0.05 0.32 3.71 0.27 0.59 0.30 1.82 

SWS-2 234.59 85.72 29.13 0.21 0.55 0.11 0.57 3.62 0.28 0.59 0.40 1.58 

SWS-3 180.54 89.21 25.10 0.33 0.59 0.19 0.66 3.49 0.29 0.60 0.28 1.87 

SWS-4 204.88 91.32 26.97 0.65 0.87 0.57 1.47 3.55 0.28 0.60 0.31 1.80 

SWS-5 133.50 84.99 21.15 0.67 0.90 0.60 1.05 3.35 0.30 0.62 0.23 2.08 

SWS-6 158.01 85.40 23.27 0.65 0.80 0.22 1.21 3.43 0.29 0.61 0.27 1.92 

SWS-7 113.87 66.11 19.32 1.41 1.14 1.60 2.42 3.28 0.31 0.62 0.33 1.75 

 

Areal parameters such as Fs (Stream frequency), Dd 

(Drainage density), T (Texture), and Dt (Depth) directly 

influence surface runoff processes and soil erosion at the scale 

of surface water systems (SWS) (Melton 1957; Aher et al. 

2014; Prasad and Pani 2017; Pathare and Pathare 2020) [23, 2, 

35, 31]. In the studied SWS, Fs values range from 0.12 to 1.41 

(SWS-1 to SWS-7), and Dd values range from 0.41 (SWS-1) 

to 1.14 (SWS-7) (Table 4). A higher Fs value in SWS-7 

indicates excessive runoff and increased erosion during floods 

(Malik et al. 2019) [21]. Moreover, higher Dd and T values in 

SWS-7 suggest relatively impermeable subsoil conditions and 

intermediate drainage texture, which promote erosion due to 

excess runoff depth compared to lower values (Smith 1950) 
[46]. 

Shape parameters such as Ff (Form factor), Rc (Circularity 

ratio), and Re (Elongation ratio) exhibit an inverse 
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relationship with runoff and erosion potentials (Nooka 

Ratnam et al. 2005) [28]. Ff values range from 0.27 (SWS-1) to 

0.31 (SWS-7) (Table 4), indicating relatively elongated 

watersheds with a flatter peak flow over an extended period 

(Horton 1932) [13]. Rc values range from 0.23 to 0.40 (Table 

4), suggesting that the SWS are mostly elongated in shape but 

less than unity. The lower Rc values in SWS-5 (0.23) and 

SWS-6 (0.27) indicate higher runoff depth and increased 

erosion in those regions. The Re values for the Hathmati 

River SWS are less than unity (0.59–0.62; Table 4), indicating 

mostly elongated shapes. The lower Re value observed in 

SWS-1 (0.59) suggests quick surface runoff and higher 

susceptibility to erosion during floods (Malik et al. 2019) [21]. 

According to Nooka Ratnam et al. (2005) [28], Cc 

(Compactness constant) values are directly proportional to 

erosion risk assessment factors. Cc values range from 1.58 

(SWS-2) to 2.08 (SWS-5) (Table 4). A lower Cc value (<2) in 

SWS-2 indicates less exposure to erosion risk factors, while 

higher values (>2) in SWS-5 and SWS-6,1, 7 indicate a higher 

susceptibility to soil erosion (Aher et al. 2014) [2]. 

Consequently, these SWS require conservation measures. 

 

 
 

Fig 3: (a) shows the Map of sub watersheds and (b) shows the drainage map with 5th order streams 

 

Inter‑correlation of EPMPS. 

The inter-correlation matrix among the 12 selected EPMPs of 

the Seven SWS as shown in Table 5 typically reveals the 

degree of relative significances of each constraint among 

them. In accordance with Meshram and Sharma (2017) [26] 

and Arefin et al. (2020) [3], morphometric parameters 

demonstrate high significance when the correlation coefficient 

value is > 0.90, good correlations when the correlation 

coefficient value is between 0.75 and 0.90, moderate 

correlation when the correlation coefficient value is between 

0.60 and 0.75, and value 0.6 suggests poor correlation among 

the morphometric parameters. Strong correlations are shown 

in Table 5 for Fs with T (0.95), Dd (0.96), and Dt (0.98), Dd 

with T (0.94), T with Dt (0.95), and Bs with Ff and Re 

(respectively, 0.98 and 0.97). Rc with Cc, Lg with Dd (-0.96) 

(-0.99). The correlation matrix also reveals the few good 

correlations between Lg with Bs (0.88), Fs (-0.86), Dt (-0.86), 

Ff (-0.81), Re (-0.85) and Fs with Ff (0.85), Re (0.83), Bs (-

0.86) and T with Ff (0.80), Re (0.73) and Bs (-0.77), Dt with Ff 

(0.76), Re (0.74), Bs (-0.78). Most of the parameters in the 

correlation matrix show poor correlations among them that 

create difficulties in assembling the parameters into 

significant components based on their relative importance 

(Arefin et al. 2020) [3]. Consequently, the obtained inter-

correlation matrix was considered for PCA to group the 

EPMPs into principal components PCs that describe the 

information of the given data. 

 

Sub watershed prioritization using principal component 

analysis (PCA) 

In a multivariate data table, PCA, a bilinear analysis 

technique, offers an understandable summary of the original 

data. Twelve initial eigenvalues are derived by PCA in the 

current study and are shown in Table 6. By choosing the 

components with eigenvalues > 1, the eigenvalue, also known 

as the Kaiser criteria, is a frequently used indicator for 

calculating the number of PCs. According to Table 6, the top 

three components collectively account for 93.56% of the total 

variance and have eigenvalues > 1. Additionally, Table 6 

demonstrates that Component-1's Eigenvalue is 7.41, 

explaining 61.76% of the total variance, Component-2's 

Eigenvalue is 2.68, explaining 22.36% of the total variance, 

and Component 3's Eigenvalue is 1.13, explaining 9.44% of 

the total variance. 
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Table 5: Inter-correlation matrix of the linear, areal, and shape morphometric parameters of the Hathmati-SWS, which are erosion-prone 

(calculated in IBM SPSS v.26 software) 
 

 
Bf rho Lg Fs Dd T Dt Bs Ff Rc Re Cc 

Bf 1.00 
           

rho -0.40 1.00 
          

Lg -0.27 0.47 1.00 
         

Fs 0.24 -0.43 -0.86 1.00 
        

Dd 0.19 -0.40 -0.96 0.96 1.00 
       

T -0.02 -0.36 -0.74 0.95 0.89 1.00 
      

Dt 0.24 -0.54 -0.86 0.98 0.95 0.94 1.00 
     

Bs -0.30 0.28 0.88 -0.86 -0.89 -0.77 -0.78 1.00 
    

Ff 0.23 -0.30 -0.81 0.85 0.84 0.80 0.76 -0.98 1.00 
   

Rc -0.06 -0.53 0.25 -0.11 -0.20 0.02 0.00 0.39 -0.27 1.00 
  

Re 0.25 -0.07 -0.85 0.83 0.88 0.73 0.74 -0.97 0.92 -0.54 1.00 
 

Cc 0.04 0.55 -0.29 0.12 0.24 0.00 0.01 -0.43 0.32 -0.99 0.58 1.00 

 
Table 6: Total variances explained for the Hathmati-SWS 

 

Compo. no 
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 7.41 61.76 61.76 7.41 61.76 61.76 7.12 59.33 59.33 

2 2.68 22.36 84.12 2.68 22.36 84.12 2.76 22.98 82.31 

3 1.13 9.44 93.56 1.13 9.44 93.56 1.35 11.25 93.56 

4 0.35 2.94 96.50 
     

5 0.31 2.55 99.05 
     

6 0.11 0.95 100 
     

7 4.51E-16 3.76E-15 100 
     

8 3.52E-16 2.93E-15 100 
     

9 1.15E-16 9.60E-16 100 
     

10 4.82E-17 4.01E-16 100 
     

11 -2.56E-16 -2.13E-15 100 
     

12 -6.66E-16 -5.55E-15 100 
     

 

The first-factor loading matrix generated by PCA (Table 7) 

indicates strong correlations between component-1 and Fs, 

Dd, Dt, RHO, Bs, Ff, Lg, and Re (>0.9), (0.75-0.90), and 

moderate correlation with Rc. Component-2 shows strong 

correlations with Rc and Cc (>0.9) and good correlation with 

RHO (0.60-0.75), Fs, and T (>0.90), and moderate correlation 

with Dd. Component-3 exhibits a strong correlation with Bf. 

However, these results alone do not provide a satisfactory 

identification of significant components. Hence, the first-

factor loading matrix was subjected to rotation using the 

Varimax algorithm to obtain more reliable correlations. 

The analysis reveals that SWS-7 obtains the highest rank (1st) 

with the lowest CF value of 2.4, while SWS-1 receives the 

lowest rank (9th) with the highest CF value of 5.4 (Fig. 4a and 

Table 9). This suggests that SWS-7 is at a high risk for soil 

erosion and requires an effective soil conservation strategy. 

 
Table 7: First factor loading matrix of principal components (PCs) extracted through PCA 

 

EPMPs 
Component 

1 2 3 

Bf 0.28 -0.12 -0.92 

rho -0.38 0.78 0.31 

Lg -0.94 0.02 0.07 

Fs 0.96 -0.17 0.10 

Dd 0.98 -0.07 0.09 

T 0.88 -0.23 0.36 

Dt 0.92 -0.29 0.09 

Bs -0.96 -0.16 0.08 

Ff 0.93 0.07 0.02 

Rc -0.28 -0.92 0.12 

Re 0.93 0.33 -0.02 

Cc 0.30 0.94 -0.10 

 

Table 8 depicts the rotated PC loading matrix, which reveals 

the largest significant loading was found in PC1 for Lg, Ff, 

Fs, Dd, T, and Dt (coefficients: 0.90, 0.90, 0.98, 0.98, 0.95, 

0.95), in PC2 for Rc and Re (coefficients: -0.96, 0.98), and in 

PC3 for Bf (coefficient: 0.96). The fact that a high value for a 

PC loading suggests a strong correlation between the 

component and the particular morphometric measure should 

also be kept in mind. Since there are twelve EPMPs, the 

rotational PC loading matrix obtained by PCA reduces them 

to the five most crucial EPMPs (Fs, Dd, Cc, Rc, and Bf), 

which are then taken into account for SWS priority. Using the 

initial priority ranks of seven SWS as a base, the final priority 

rankings of those seven SWS and their estimated CF values 

are given in table 9 
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Table 8: Varimax rotated PCs loading matrix retrieved by PCA orthogonal transformation 

 

EPMPs 
Component 

1 2 3 

Bf 0.11 0.01 0.96 

rho -0.41 0.69 -0.46 

Lg -0.90 -0.11 -0.24 

Fs 0.98 -0.04 0.10 

Dd 0.98 0.05 0.09 

T 0.95 -0.15 -0.17 

Dt 0.95 -0.17 0.11 

Bs -0.90 -0.29 -0.23 

Ff 0.90 0.19 0.14 

Rc -0.14 -0.96 -0.06 

Re 0.87 0.46 0.14 

Cc 0.17 0.98 0.04 

 
Table 9: PCA-based final prioritization of the Hathmati-SWS 

 

SWS No. 
EPMPs parameters 

Preliminary priority rankings of SWS 

prioritization based on PCA 
Final  

priority 
Bf Dd Rc Cc Fs Bf Fs Dd Rc Cc CF value 

SWS-1 2 0.41 0.3 1.82 0.12 5 7 7 4 4 5.4 7th 

SWS-2 3.6 0.55 0.4 1.58 0.21 3 6 6 7 1 4.6 6th 

SWS-3 3.3 0.59 0.28 1.87 0.33 4 5 5 3 5 4.4 5th 

SWS-4 2 0.87 0.31 1.8 0.65 6 3 3 5 3 4 4th 

SWS-5 1.8 0.9 0.23 2.08 0.67 7 2 2 1 7 3.8 3rd 

SWS-6 10.1 0.8 0.27 1.92 0.65 1 4 4 2 6 3.4 2nd 

SWS-7 4.6 1.14 0.33 1.75 1.41 2 1 1 6 2 2.4 1st 

 

Prioritization of sub-watershed using PCA-WSA 

The PCA-WSM is a model that combines PCA and weighted 

sum analysis to calculate compound factor (CF) values for 

prioritizing sub watersheds (SWS). It uses significant 

environmental pollutant parameters (EPMPs) obtained from 

PCA, including Fs, Dd, Cc, Rc, and Bf. The model constructs 

a cross-correlation matrix and determines weighting factors 

for each parameter. The CF values are computed using the 

preliminary rankings of EPMPs, and the final priority ranking 

of SWS is determined based on these CF values. SWS-7 

receives the highest priority rank (1st), followed by SWS-5, 

SWS-6, SWS-4, SWS-3, SWS-2, and SWS-1, as indicated by 

their respective CF values. 

 
Table 10: Using cross-correlation analysis, the most significant EPMPs obtained from the PCA model to calculate their final weight-age for 

SWS prioritization using PCA-adopted weighted sum model (PCA-WSM) (Modified after Aher et al. 2014) [2] 
 

 
Most significant EPMPs obtain through PCA model 

 
Bf Fs Dd Rc Cc 

Bf 1.00 -0.04 -0.04 -0.29 0.29 

Fs -0.04 1.00 1.00 0.14 -0.14 

Dd -0.04 1.00 1.00 0.14 -0.14 

Rc -0.29 0.14 0.14 1.00 -1.00 

Cc 0.29 -0.14 -0.14 -1.00 1.00 

Sum of coefficients 0.93 1.96 1.96 0.00 0.00 

Final weightages 0.19 0.40 0.40 0.00 0.00 
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Fig 4: SWS prioritization ranking map of the study area based on the compound factor (CF) values derived from (a) the principal component 

analysis (PCA) method and (b) the PCA adopted weighted sum model (PCA-WSA). Here, the label on the map shows the SWS numbering on 

both maps 

 

CF = (𝐵𝑓 × 0.19) + (𝐹𝑠 × 0.40) + (𝐷𝑑 × 0.40) + (𝑅𝑐 × 0.00) × (𝐶𝑐 × 0.00)  

 
Table 11: SWS's final priority ranking Based on PCA-WSM compound factor 

 

 
Most significant EPMPs obtain through PCA model 

 
Bf Fs Dd Rc Cc 

Bf 1.00 -0.04 -0.04 -0.29 0.29 

Fs -0.04 1.00 1.00 0.14 -0.14 

Dd -0.04 1.00 1.00 0.14 -0.14 

Rc -0.29 0.14 0.14 1.00 -1.00 

Cc 0.29 -0.14 -0.14 -1.00 1.00 

Sum of coefficients 0.93 1.96 1.96 0.00 0.00 

Final weightages 0.19 0.40 0.40 0.00 0.00 
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SWS no. 
SWS prioritization by PCA-WSM 

CF value Final priority 

SWS-1 6.55 7th 

SWS-2 5.37 6th 

SWS-3 4.76 5th 

SWS-4 3.54 4th 

SWS-5 2.93 2nd 

SWS-6 3.39 3rd 

SWS-7 1.18 1st 

 

Final prioritization of the Hathmati river SWS 

By computing the correlation between the PCA-WSM and 

PCA-PCA values, the final SWS prioritising was determined. 

Through this study, the SWS are reclassified into three new 

priority zones based on the CF values, i.e., CF value of 3.50 

signifies the high priority zone, CF value from 3.50 to 5.50 

defines the medium priority zone, and CF value > 5.50 

denotes the low priority zone (Table 12). The study also 

demonstrates that the SWS-7, SWS-5, and SWS-6 are 

classified as high priority zones by the PCA model, whereas 

the SWS-2, SWS-3, and SWS-4 are classified as medium 

priority zones and the SWS-1 is classified as low priority 

zones. SWS-7, SWS-5, SWS-6, and are classified as high 

priority zones by the PCA-WSM, while SWS-3, SWS-4 and 

SWS-2 are considered medium priority zones. and the SWS-1 

is classified as low priority zones. 

 

 
 

Fig 5: Final priority zonation map for Hathmati-SWS based on CF threshold values obtained from the correlation study between PCA and PCA-

WSM 

 
Table 12: Priority zonation of the Hathmati-SWS based on a comparison of the final ranks obtained from the PCA and the PCA-WSM 

 

Priority SWS prioritization by PCA model  SWS prioritization by IPCA&WSM model 
Common SWS 

 CF value SWS  CF value SWS 

High ≤ 3.50 SWS-7, SWS-5, SWS-6  ≤ 4.50 SWS-7, SWS-5, SWS-6, SWS-7, SWS- 5, SWS-6 

Medium 3.5–5.5 SWS-2, SWS-3, SWS-4 3.5–5.50 SWS-2, SWS-3, SWS-4 SWS-2, SWS-3, SWS-4 

Low > 5.0 SWS-1 > 5.50 SWS-1 SWS-1 
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Conclusion 

Geomorphometric analysis of the Hathmati-SWS was 

conducted by assessing linear, areal, and shape morphometric 

parameters to demonstrate their relationship with the 

watershed hydrology. This work also demonstrates an 

integrated model for SWS prioritization based on PCA and 

PCA-WSM that can access the sensitive zone affected by soil 

erosion. The entire watershed is described as the conventional 

dendritic drainage system-reflecting 5th order watershed. The 

stream network map and SWS map computations of twelve 

EPMPs, namely Bf, RHO, Lg, Fs, Dd, T, Dt, Bs, Ff, Rc, Re, 

and Cc, were primarily selected as the input variables for 

PCA. In this work, PCA was carried out using five 

mathematical processes, including standardisation, inter-

correlation analysis, first-factor identification, PCs by 

extracting eigenvalues > 1, first-factor loading matrix, and 

rotated matrix calculation. The final output of PCA (rotated 

matrix) effectively reduces the twelve EPMPs into five most 

significant EPMPs with the highest axial loading for Fs and 

Dd (coefficient: 0.98) in PC1, RC and Cc (coefficient: -0.96, 

0.98) in PC2, and Bf (coefficient: 0.96) in PC3. The PCA-

based prioritising analysis shows that SWS-7, which has the 

lowest CF values of 2.4, is the high-risk zone for soil erosion, 

while SWS-1, which has the greatest CF values of 5.4, is the 

low-risk zone. Additionally, the SWS-7 with the lowest CF 

value of 1.18 is also in agreement with the results of the PCA-

WSM-based watershed prioritisation study, which identifies 

high-risk SWS in a similar manner. The entire watershed was 

categorised into three broad categories based on the 

correlative analysis between these two methodologies, with 

SWS-5, SWS-6, and SWS-7 being the high-risk zone, SWS-4, 

SWS-3, SWS-2 being the medium-risk zone, and SWS-1 

being the low-risk zone. Results from the combined use of 

these two techniques (PCA and PCA-WSM) are 

demonstrated. It is observed that the SWS are located in a 

high-risk zone (about 30.97% of the entire watershed) should 

be taken into account for effective and early watershed 

management planning. Therefore, this research may be 

viewed as a helpful resource for this study area and river 

geomorphologists and hydrogeologists to build and 

implement cutting-edge watershed management plans for 

vulnerable zones. 
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