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Abstract 
Accurate prediction of potential evapotranspiration (PET) is crucial for effective irrigation management. 

This article presents a study that utilized seasonal autoregressive integrated moving average (SARIMA) 

models to forecast PET in Koppal district. The study used maximum and minimum temperature data (°C) 

along with the Thornthwaite method to estimate PET. Selection of the SARIMA models was based on 

the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values. The study's 

findings revealed that the SARIMA models were capable of providing accurate PET forecasts up to one 

month in advance. Among the different stations, the models for Koppal and Kushtagi demonstrated 

particular promise. The implications of these findings suggest that employing SARIMA models can 

significantly enhance irrigation planning and command area management practices in Koppal district, 

thereby leading to improved water resource management in the region. For each station, specific 

SARIMA models were selected, namely ARIMA(1,0,1) (2,1,0)12 for Koppal, ARIMA(1,0,1) (2,1,0)12 for 

Gangavathi, ARIMA (1,0,1) (2,1,0)12 for Kushtagi, and ARIMA (2,0,2) (2,1,0)12 for Yelburga. All four 

models displayed superior results, offering reliable forecasts up to one month ahead. These models have 

the potential to elevate irrigation planning and command area management practices, leading to more 

effective water resource management. 

 

Keywords: ACF, PACF, SARIMA, PET and ARIMA 

 

Introduction 

Evapotranspiration (ET) represents a crucial element of the hydrologic cycle, encompassing 

the transfer of water from the Earth's surface to the atmosphere (Asadi et al., 2013) [2]. On a 

global scale, ET accounts for approximately 60% of the annual precipitation received by the 

Earth's surface. Its importance extends to various applications, including crop production, 

water resource management, and environmental evaluation (Aruna et al., 2017) [1]. The 

adequate supply of water to fulfill the evapotranspiration needs of agricultural crops directly 

influences the quality and quantity of their yield. Consequently, ET data has gained increasing 

importance in both irrigation practices and water resources management. Multiple 

hydrological parameters, such as temperature, relative humidity, solar radiation, and wind 

speed, regulate the process of ET.  

Stochastic models are designed to account for time-dependent variations and incorporate 

random effects associated with the evapotranspiration (ET) process. These models are fitted to 

hydrological data or time series, specifically ET series, enabling seamless integration of on-

farm systems with the main system and facilitating real-time operation of irrigation systems. 

To effectively design and plan irrigation systems, it is crucial to develop synthetic or forecast 

data sets. In this context, one of the most effective models for forecasting time series data is 

the autoregressive integrated moving average (ARIMA) model. ARIMA models define the 

forecast of a variable as a linear combination of its past states and previous forecast errors. 

This makes the ARIMA method a powerful tool for time series modeling and forecasting, 

applicable to a wide range of time series data. ARIMA models have been extensively 

employed in hydrological time series modeling in various studies. For instance, Popale and 

Gorantiwar (2014) [12] utilized ARIMA models to predict rainfall in the Rahuri region of India. 

Gorantiwar and Patil (2009) [15] analyzed evapotranspiration in the Rahuri region using 

ARIMA models. Hamdi et al. (2008) [9] developed seasonal ARIMA models for the Jordan 

Valley. Asadi et al. (2013) [2] employed ARIMA models to forecast evapotranspiration in 

humid and semi-humid regions. Salas et al. (1980) [13] provided a detailed discussion on time 

series modeling. 
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Understanding evapotranspiration is importance for a variety 

of activities, encompassing watershed management, 

meteorological and hydrological modeling, as well as water 

management in irrigated agriculture (Dutta et al., 2016) [5]. 

Evapotranspiration plays a significant role in determining 

crop water requirements (CWR). As CWR constitutes over 

95% of total ET, comprehending its behavior based on 

historical data becomes essential for improved water resource 

management. The primary aim of this study is to create a time 

series model that can effectively analyze and forecast 

potential evapotranspiration in the Koppal district. 

 

Materials and Method  

Koppal district was formed on August 25, 1997, when it was 

bifurcated from Raichur district. It is located in the northern 

part of Karnataka and spans a geographical area of 5,559 sq 

km. The district comprises four taluks: Koppal, Yelburga, 

Gangavathi, and Kustagi. Known to be a backward district in 

the region, Koppal lies between 15°09’ to 16° 01’ north 

latitude and 75° 46’ to 76° 48’ east longitude, situated in the 

Hyderabad Karnataka region. According to the 2001 census, 

the district is home to a population of 1,196,089 people, with 

a population density of 215 people per square kilometer. The 

area is located in the Tungabhadra sub-basin of the Krishna 

basin, and the Tungabhadra River flows along its southern 

boundary in a north-easterly direction. Koppal District 

borders Bagalkot District to the north, Raichur District to the 

east, Bellary District to the south, and Gadag District to the 

west. 

 

The potential evapotranspiration (PET) is calculated using 

the Thornthwaite method  

 
Potential evapotranspiration ("𝑃𝐸𝑇) = 16𝐾" ("10𝑇" /"𝐼" )^"𝑚"  
 

Where, 

T - monthly mean temperature (°C),  

I - heat index calculated as the sum of 12 month index values, 

and m is a coefficient dependent on I.  

 

m = 6.75 × 10−7 ·I3 - 7.71 × 10−7 · I2 + 1.79 × 10-2 ·I + 0.492 

 

The correction coefficient K is a function of the latitude and 

month.  

 

Auto correlation test (Box Ljung analysis)  

The Box-Ljung Test's null hypothesis (H0) asserts that our 

model exhibits a good fit, meaning there is no lack of fit. The 

alternative hypothesis (Ha) posits that the model does display 

a lack of fit. When the test yields a significant p-value, it 

rejects the null hypothesis, indicating that the time series is 

indeed autocorrelated. 

 

Stationary test (Dickey fuller test) 

A time series is considered stationary in the weak sense when 

its statistical properties, such as means and variance, remain 

constant over time. Conversely, if the computed p-values 

exceed 0.05, the time series is categorized as non-stationary. 

Stationary time series are needed to fit stochastic models. 

 

Description of the stochastic model 

Stochastic models, often referred to as time series models, 

find extensive applications in mathematical, economic, and 

engineering contexts to study time series data. Time series 

modeling techniques have demonstrated their efficacy as 

systematic analytical tools, enabling the simulation and 

prediction of the behavior of unpredictable hydrological 

systems. Additionally, they enable the assessment of forecast 

accuracy, as demonstrated by (Mishra and Desai in 2005) [11]. 

 

Autoregressive integrated moving average model  

By combining autoregressive (AR) models and moving 

average (MA) models, we create a distinct and efficient class 

of time series models known as autoregressive integrated 

moving average (ARMA) models. Within an ARMA model, 

the current value of the time series is expressed as a linear 

combination of 'p' lagged values, a weighted sum of the past 

'q' deviations from the mean, and a random parameter. This 

approach offers a powerful way to capture and explain the 

patterns and characteristics present in the time series data. 

 ARIMA models are primarily applied to time series that 

exhibit stationarity. Nonetheless, they can also be employed 

for non-stationary data sets by applying differencing to the 

series. The ARIMA methodology, developed by Box and 

Jenkins in 1976 [4] emphasizes the analysis of time series' 

stochastic properties independently, rather than constructing 

single or simultaneous equation models. This approach 

provides a valuable tool for understanding and modeling 

various types of time series data, whether they display 

stationarity or non-stationarity. 

Autoregressive integrated moving average models facilitate 

the representation of each variable as a linear combination of 

its own past values and stochastic error terms. The general 

non-seasonal Autoregressive integrated moving average 

models combines an autoregressive (AR) component of order 

'p' and a moving average (MA) component of order 'q', 

operating on the ‘d-th’ difference of the time series 'zt'. 

Consequently, an ARIMA model is characterized by three 

parameters: 'p', 'd', and 'q', all of which can take non-negative 

integer values (Mishra and Desai, 2005) [11]. 

The general non-seasonal ARIMA model can be expressed as 

follows: 

 

∅(𝐵) ∇_(𝑧_𝑡)^𝑑 =  𝜃(𝐵) 𝑎_𝑡  

 

The non-seasonal AR operator of order 'p' can be represented 

as ϕ(B), where ϕ is a polynomial of oder p is written as:  

 

∅(𝐵) = (1 − ∅_1 𝐵 − ∅_2 𝐵^2 − ⋯ ∅_𝑝 𝐵^𝑝 )  

 

The non-seasonal MA operator of order 'q' is denoted as θ(B), 

where θ is a polynomial of order q is written as: 

 

𝜃(𝐵) = (1 − ∅_1 𝐵 − ∅_2 𝐵^2 − ⋯ 𝜃_𝑞 𝐵^𝑞)  

 

Seasonal Autoregressive integrated moving average model 

models  
Cyclic behavior is frequently observed in many time series. In 

hydrologic time series, this cyclic behavior often occurs 

annually due to the earth's rotation around the sun. These 

types of series are considered cyclically non-stationary. To 

analyze such series, it is essential to remove the deterministic 

cyclic effects. One common approach for modeling the 

remaining stochastic part of the series is the Autoregressive 

Integrated Moving Average (ARIMA) method. Gorantiwar et 

al. (2011) [6] explained that after eliminating the deterministic 
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cyclic effects, the ARIMA approach can be employed to 

develop a linear model for the stochastic component of the 

time series. To address seasonality in time series, Box et al. 

(1994) [3] proposed a standardized version of the ARIMA 

model, known as Seasonal Autoregressive Integrated Moving 

Average (SARIMA) models. These models are particularly 

useful because they can handle non-stationarity in both the 

seasonal and non-seasonal components of the data (p, d, q) 

represents the non-seasonal part of the model, (P, D, Q)s 

represents the seasonal part of the model. In summary, 

SARIMA models offer a powerful tool for analyzing time 

series data with cyclic behavior and non-stationarity in both 

seasonal and non-seasonal components. 

 

∅_𝑝 (𝐵) 𝛷_𝑝 (𝐵^𝑠 ) 𝛻_𝑠^𝑑 𝑍_𝑡 =  𝜃_𝑝 (𝐵)𝜑_𝑄 𝜃(𝐵^𝑠)𝑎_𝑡  

 

In a SARIMA model, the parameters are as follows:  

Where, p: The order of the non-seasonal autoregression (AR) 

component, d: The number of regular differences needed to 

make the series stationary (non-seasonal differencing), q: The 

order of the non-seasonal moving average (MA) component, 

P: order of seasonal autoregression, D: The number of 

seasonal differences needed to make the series stationary 

(seasonal differencing), Q: The order of the seasonal moving 

average (MA) component, S: The length of the season, which 

indicates the number of time steps in a seasonal cycle.  

 

Model recognizing  

The next step involves identifying the suitable ARIMA model 

that best represents the behavior of the time series. This can 

be achieved by examining the autocorrelation function (ACF) 

and partial autocorrelation function (PACF) (Mishra and 

Desai, 2005; Hsin-Fu Yeh and Hsin-Li Hsu, 2019) [11, 10]. By 

analyzing the ACF and PACF, we can determine the 

appropriate order of the ARIMA model and gain insights into 

the types of models that may be applicable. Ultimately, the 

final model selection is based on the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC). 

The Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) are utilized for model ranking, 

with the model having the lowest criterion value considered 

the most suitable. The mathematical expressions for AIC and 

SBC are as follows. 

 

The AIC and SBC can be expressed mathematically as 

follows 

AIC = -2 * log(L) + 2 * k 

SBC = -2 * log(L) + k * log(n) 

 

Where, in the expressions, "k" represents the number of 

parameters in the model, "L" denotes the likelihood function 

of the ARIMA model, and "n" stands for the number of 

observations. 

 

Estimation of parameters 

Once the suitable model has been identified, the subsequent 

step involves estimating the model parameters. Maximum 

likelihood estimation, a statistical technique that maximizes 

the likelihood of the data given the model, is used for this 

purpose. After the parameter estimation, the AR and MA 

parameters are subjected to statistical significance testing to 

determine whether they hold substantial statistical value or 

not. 

Checking of Diagnostic  

Diagnosing the ARIMA model is a crucial and final step in 

the model development process. This step involves carefully 

evaluating the chosen model's appropriateness by inspecting 

various diagnostic statistics and residual plots to assess 

whether the residuals exhibit characteristics of white noise. In 

our study, we utilized the residual autocorrelation function 

(RACF) to determine whether the residuals conform to the 

properties of white noise. 

 

Data forecasting  

The most suitable models identified from historical data were 

employed to predict potential evapotranspiration (PET). The 

essential statistical properties of both observed and predicted 

data were computed and examined to assess whether the 

predicted data retained the fundamental statistical 

characteristics of the observed PET series. Correlation 

coefficients (R), root mean square error (RMSE), and mean 

absolute error (MAE) were calculated to evaluate the 

agreement between the observed and predicted data. 

 

Input Dataset and software 

The time series of temperature data set (Max & Min) was 

taken from the Main Agriculture Research Station (MARS) 

Gangavathi. The data set were from 1990-2020, out of which 

1990-2018 was used for the development of the model and the 

2019-2020 was used for the validation purpose. The 

estimation of Potential evapotranspiration was estimated 

using MS Excel and SARIMA models were developed in the 

R studio. 

 

Results and Discussion 

Before developing the model, two prerequisite tests were 

conducted: stationarity and autocorrelation. The Box test was 

used for the autocorrelation test, and the results are presented 

in Table 1. The outcomes indicated significant autocorrelation 

in the data for Koppal, Gangavathi, Kushtagi, and Yelburga, 

with test statistics of 185.94 (p-value: 0.01), 184.88 (p-value: 

0.01), 180.42 (p-value: 0.01), and 183.12 (p-value: 0.01) 

respectively at a 5% level of significance. Subsequently, the 

Augmented Dickey-Fuller (ADF) test was performed to 

assess stationarity. The data was found to be non-stationary, 

leading to the application of seasonal differencing on the data 

sets (Table 2).  

The initial step in constructing a Box-Jenkins ARIMA model 

involves identifying the appropriate model. This process 

includes exploring different orders of the autoregressive (AR) 

and moving average (MA) parameters, denoted as p and q, 

respectively. The goal is to select the combination that 

maximizes the log-likelihood while minimizing the Akaike 

information criterion (AIC) and Bayesian information criteria 

(BIC) values. The obtained results for the Koppal, 

Gangavathi, Kushtagi, and Yelburga stations are presented in 

Tables 3 and 4. To determine the model, the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) 

were plotted (Fig. 1 and Fig. 2). It was found that the data 

exhibited seasonality, leading to the selection of seasonal 

ARIMA models with seasonal differencing. The best models 

chosen for the four stations were as follows: Koppal: ARIMA 

(1, 0, 1) (2, 1, 0)12 with a maximum likelihood value of -

1532.07, Gangavathi: ARIMA(1, 0, 1) (2, 1, 0)12 with a 

maximum likelihood value of -1566.40, Kushtagi: ARIMA(1, 

0, 1) (2, 1, 0)12 with a maximum likelihood value of -1532.32, 
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Yelburga: ARIMA (2, 0, 2) (2, 1, 0)12 with a maximum 

likelihood value of -1644.31. The estimated parameters for 

the different stations are presented in Table 4. Additionally, 

the residuals were obtained by differencing the original series 

with the fitted series. Table 5 demonstrates that the residuals 

were found to exhibit characteristics of white noise. 

After developing models for four taluks, forecasting was 

carried out at different lead times (1-6 months). The results in 

Table 6 indicate that initially, for all stations, the forecast was 

observed to be good at a 1-month lead time with correlation 

coefficients of 0.90, 0.96, 0.92, and 0.89 for Koppal, 

Gangavathi, Kushtagi, and Yelburga, respectively. The root 

mean square error (RMSE) and mean absolute error (MAE) 

were found to be at their lowest at 1-month lead time and 

increased as the lead time increased. These stochastic models 

were found to be suitable for forecasting up to a 1-month lead 

time. However, it can be noticed from Table 6 that as the lead 

time increases, the error rate increases significantly. It can be 

concluded that Seasonal ARIMA models are well-suited for 

forecasting at a 1-month lead time for potential 

evapotranspiration forecasting under the Koppal region. To 

validate the forecasted data, basic statistical properties were 

compared with the observed data for the 1-month lead time. 

The comparison was performed using t-test for means and F-

test for standard deviation (Haan 1977)[8], as shown in Table 

7. The tcal values related to means were within the t-critical 

table values (±1.71 for two-tailed at a 5% significance level), 

indicating that there is no significant difference between the 

mean values of observed and predicted data. Similarly, the 

Fcal values for standard deviation were smaller than the F-

critical values at a 5% significance level. Hence, the results 

demonstrate that the predicted data preserves the basic 

statistical properties of the observed series. 

 

 
 

Fig 1: Autocorrelation function plot of PET time series for Koppal Station 

 

 
 

Fig 2: Partial autocorrelation function plot of PET time series for koppal Station 
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Table 1: Results of the autocorrelation tests for different stations. 

 

Station Chi-Square Lag order P-value 

Koppal 185.94 1.0 <0.001 

Gangavathi 184.88 1.0 <0.001 

Kushtagi 180.42 1.0 <0.001 

Yelburga 183.12 1.0 <0.001 

 
Table 2: Stationary tests conducted for different stations 

 

Station Dickey fuller Lag order P-value 

Koppal -16.961 7.0 0.01 

Gangavathi -17.267 7.0 0.01 

Kushtagi -16.632 7.0 0.01 

Yelburga -16.306 7.0 0.01 

 
Table 3: Log likelihood, AIC, and BIC values of the ARIMA 

models for different stations. 
 

Station Model 
Log-

Likelihood 
AIC BIC 

Koppal 
SARIMA  

(1,0,1) (2,1,0)12 
-1532.07 3074.14 3093.4 

Gangavathi 
SARIMA  

(1,0,1) (2,1,0)12 
-1566.4 3142.79 3162.05 

Kushtagi 
SARIMA  

((1,0,1) (2,1,0))12 
-1532.32 3074.64 3093.9 

Yelburga 
SARIMA  

(2,0,2) (2,1,0)12 
-1644.31 3304.62 3335.44 

 

Table 4: Parameter estimations of SARIMA models obtained using 

the maximum likelihood method for different stations. 
 

Station Model Parameter Estimate S.E. Z- value P- value 

Koppal 
SARIMA 

(1,0,1) (2,1,0)12 

ARI 0.738 0.080 -1.811 <0.001 

MA1 -0.401 0.110 3.324 < 0.001 

SAR1 -0.842 0.049 0.791 < 0.001 

SAR2 -0.406 0.050 -4.096 < 0.001 

Gangavathi 

 

SARIMA 

(1,0,1) (2,1,0)12 

AR1 0.703 0.089 7.897 < 0.001 

MA1 -0.360 0.119 -3.026 < 0.001 

SAR1 -0.844 0.049 -16.987 < 0.001 

SAR2 -0.413 0.049 -8.315 < 0.001 

Kushtagi 

 

SARIMA 

(1,0,1) (2,1,0)12 

AR1 0.738 0.080 9.207 < 0.001 

MA1 -0.401 0.110 -3.630 < 0.001 

SAR1 -0.842 0.049 -16.918 < 0.001 

SAR2 -0.406 0.050 -8.133 < 0.001 

 

Yelburga 

 

SARIMA 

(2,0,2) (2,1,0)12 

AR1 1.052 0.883 1.191 < 0.001 

AR2 -0.214 0.641 -0.333 < 0.001 

MA1 -0.753 0.882 -0.853 < 0.001 

MA2 0.0948 0.393 0.241 < 0.001 

SAR1 -0.820 0.051 -16.056 < 0.001 

SAR2 -0.391 0.116 -7.666 < 0.001 

 
Table 5: Auto correlation check for residuals of seasonal ARIMA 

model at different station 
 

Station Chi-Square Lag order P-value 

Koppal 0.01 1.0 0.91 

Gangavathi 0.007 1.0 0.93 

Kushtagi 0.01 1.0 0.90 

Yelburga 0.0003 1.0 0.98 

 
Table 6: Performance measures of the seasonal ARIMA model for different stations 

 

Station Model Performance measuers 

Koppal 
ARIMA 

(1,0,1) (2,1,0)12 

RMSE 15.44 

MAPE 7.60 

R 0.90 

Gangavathi 
ARIMA 

(1,0,1) (2,1,0)12 

RMSE 19.49 

MAPE 7.02 

R 0.96 

Kushtagi 
ARIMA 

(1,0,1) (2,1,0)12 

RMSE 15.46 

MAPE 7.62 

R 0.92 

Yelburga 
ARIMA 

(2,0,2) (2,1,0)12 

RMSE 28.93 

MAPE 8.14 

R 0.89 

 
Table 7: Comparison statistic prosperities of the observed and predicted data 

 

Station Mean observed Mean forecasted Decision (t<1.71) Observed variance Forecasted variance Decision (f<4.05) 

Koppal 151.54 150.53 0.83 1392.85 994.21 0.32 

Gangavathi 159.47 152.99 0.26 5814.43 4236.48 0.30 

Kushtagi 152.00 150.66 0.82 4579.89 3472.66 0.33 

Yelburga 178.75 172.18 0.45 8433.50 6118.59 0.30 

 

Conclusion 

The seasonal ARIMA models were able to forecast potential 

evapotranspiration accurately up to 12 months ahead, with the 

best results at the Koppal station. The R, RMSE, and MAPE 

values for Koppal were 0.90, 15.44, and 7.60, respectively. 

The seasonal ARIMA models were able to accurately forecast 

potential evapotranspiration up to one month ahead for all 

stations, with the least error. The fundamental statistical 

analysis further revealed that the disparity between the 

observed and forecasted means was not significant. This 

implies that the models hold promise for accurately 

forecasting potential evapotranspiration throughout the study 

period. Accurate predictions of evapotranspiration are crucial 

for reliable project planning, design, and efficient operation of 

irrigation systems. 
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