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Abstract 
Remote sensing in agriculture is a frontier area that leverages advanced technologies to revolutionize 

farming practices. By harnessing the power of sensors mounted on satellites, drones, and aircraft, remote 

sensing enables the collection and analysis of data about crops and land from a distance. Crop phenotype 

refers to a comprehensive set of physiological and biochemical characteristics that are influenced by the 

genetic information and environmental factors. Phenotyping plays a prominent role in predicting the 

genotypic and phenotypic expression patterns in relation to yield improvement. Conventional approaches 

for acquiring phenotypic data in field is labour intensive and time-consuming process. Therefore, the 

emergence of Unmanned Aerial Vehicle based remote sensing platforms (UAV-Rs) equipped with 

diverse sensors has recently revolutionized the high-throughput phenotyping. Sensor based crop 

phenotyping involves in rapid and nondestructive collection of large-scale plant phenotypic data through 

UAV-Rs technologies. This review examines how the strategic use of imaging spectroscopy of UAV-Rs 

facilitates the compliance monitoring of crop phenotype, in the assessment of crop geometric and 

quantitative traits, in the estimation of vegetation indices and in the biotic and abiotic stresses responses 

through different spectroscopy imaging technologies such as RGV, multispectral, hyperspectral, thermal, 

LIDAR and RADAR. 

 

Keywords: Unmanned aerial vehicle, remote sensing, crop phenotyping, spectroscopy imaging, crop 

geometric traits 

 

Introduction 

In 21st century, the challenge in crop research lies in accurate forecasting of crop performance 

amidst the dynamic backdrop of climate change. The extremities of climate change and global 

warming necessitates the development of high yielding stress tolerant varieties. The advances 

in next generation DNA sequencing have significantly enhanced genotyping efficiency, the 

progress in characterizing plant traits has been comparatively slower over the past three 

decades. Consequently, limitations in phenotyping capabilities restrict our capacity to unravel 

the genetic quantum of plant traits, particularly those associated with complex physiological 

and biophysical status traits. The use of remote sensing tools in high-throughput field-

phenotyping has emerged as a rapid, cost effective and non-destructive method for plant 

screening (White et al., 2012) [60].  

Remote sensing is the discipline of both art and science that acquires information about objects 

without direct physical contact using various techniques and technologies. The beginning of 

remote sensing in agriculture is involved in large area inventories and regional crop mapping. 

The present day contribution of Remote sensing in agriculture involves in pest management, 

irrigation scheduling, crop growth monitoring, nutrient management, stress detection, Invasive 

species detection and in natural resource management and in its applications. The traits that 

influence the performance index of a crop includes the crop phenology, crop canopy, 

greenness index of canopy, leaf inclination, canopy temperature depression, plant density and 

leaf nitrogen content which can be measured through remote sensing by measuring radiance 

and extracting the former (Weiss et al., 2019) [59]. 

Remote sensing systems employed in precision agriculture can be categorized based on the 

platform on which the sensors are mounted and also based on the type of sensors utilized. 

These platforms include satellites, aerial vehicles such as drones and aircraft (Unmanned aerial 

vehicles), and ground-based installations (Unmanned ground vehicles) [Fig.01].  
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Since the1970s satellite-based products have played a 

significant role in precision Agriculture whereas in more 

recent times, aerial platforms, including aircraft and 

unmanned aerial vehicles (UAVs), have gained popularity and 

are being increasingly utilized in Precision Agriculture. The 

UAV based remote sensing (UAV-Rs) can attain the plot 

level resolution by measuring several hundreds of plots in one 

mission through high resolution thermal and multispectral 

imaginary captured at an altitude ranging from 30 – 100 m 

(Tattaris et al., 2016) [54]. Ground-based platforms and devices 

are the tractor mounted sensors and the hand-held instruments 

which includes infrared thermometers, sped meter and an 

NDVI through spectral radiometer. These measures canopy 

temperature depression, chlorophyll content index and 

vegetation behavior respectively. The calculation of NDVI 

involves using wavelengths in the near infrared (NIR) and 

visible (VIS) regions of the electromagnetic spectrum. NDVI 

can measure the chlorophyll content and describe the 

photosynthetic capacity of the plant. It can estimate crop 

biomass at different phenophases of crop along with the 

nitrogen deficiency and crop senescence rate (Raun et al., 

2001 and Babar et al., 2006) [46, 2]. Canopy temperature serves 

as a direct measure of the plants transpiration rate and is 

closely associated with stomatal conductance and plant water 

status, exhibiting a robust correlation with plant performance 

under stress conditions (Berliner et al., 1984) [4]. 

 

 
 

Fig 1: The picture represents the types of remote sensing and fundamental sensor systems used in remote sensing 
 

Ground based systems are also known as proximal remote 

sensing as they are situated in close proximity to the targeted 

surface, whether it is land surface or plant (Sishodia et al., 

2020) [52]. On the other hand, sensors can be classified into 

passive and active (Fig. 01). Each of these different platforms 

and sensors serves specific purposes and provides valuable 

information for monitoring and managing crops. The role of 

Satellite based imaging technologies in agriculture is 

extremely useful, whereas the major limitations of using 

satellite sensors includes high cost, less spatial resolution for 

observing desirable traits and cloudy weather conditions (Issei 

et al., 2010, Sankaran et al., 2015 and Gevaert et al., 2015) [24, 

49, 15]. The large-scale field condition monitoring with the 

sensors having high spatial and spectral resolutions can be 

performed by UAV-Rs. UAV-Rs are flexible and low-altitude 

affordable tools of remote sensing for field monitoring and 

precision agriculture (Hunt et al., 2005, Liebisch et al., 2015 

and Candiago et al., 2015) [23, 31, 8] Hence, this review is to 

evaluate the feasibility of Unmanned Aerial Vehicles of 

Remote sensing (UAV-Rs) in high through-put phenotyping 

and to provide an overview of current techniques of UAV-Rs. 

Extraction of plant phenotypic data includes two approaches 

one is traditional and the other is through remote sensing. 

Traditional method involves direct measurement of 

phenotypic data such as plant height, biomass, leaf area index, 

chlorophyll and carotenoid content, protein, soil moisture 

content by standard procedures at field in a destructive and 

time-consuming manner. It is an outdated approach of 

phenotyping that doesn’t provide a through phenotypic data 

extraction of plant with no parallelism between genotype and 

phenotype (Rahaman et al., 2015) [45].  
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(UAV- Unmanned Aerial Vehicle, GB- Ground Based) 
 

On the other hand sensor based field phenotyping of crop 

using Unmanned Aerial Vehicle of remote sensing technology 

have the ability in productive study of the phenotypic 

characters of large areas in non-destructive manner with 

convenient flexibility in operating and providing demand 

access to data with high level of spectral and spatial resolution 

(Yang et al., 2017) [63]. The correlation between manual 

approach and UAV-Rs based estimates showed correlation of 

R2 >0.8 (Han et al., 2018) [21]. Images captured by sensors 

play a prominent role in monitoring crop geometric and 

agronomic traits (Feng et al., 2021) [12]. Various sensors 

equipped on UAVs are described as follows. The use of 

UAV-Rs imaging technology in precision agriculture has 

been in use since 2010 (Schirrmann et al., 2016) [50]. 

 

Various sensors mounted on UAV-Rs 

Commercial UAV-Rs currently utilize a range of sensors, 

including digital cameras or visible imaging cameras (RGB), 

multispectral cameras, infrared thermal imagers, 

hyperspectral cameras, LIDAR (Light Dectection and 

Ranging), synthetic aperture radar (SAR) and 3D-cameras. 

These sensor choices are influenced by factors such as cost, 

low power consumption, small size and light weight design, 

payload capacity, and technological advancements as 

highlighted in studies by (Sankaran et al., 2015) [49]. 

 

Visible light imaging or RGB UAV-Rs 

RGB cameras are widely utilized among the image processing 

applications It involves in the detection of visual symptoms of 

plants, such as diseases that causes the alteration of color 

composition in leaves and the presence of insects and 

pathogensi on the foliage. Color plays a significant role in the 

detection of disease as it implies in the analysis of intensity of 

disease. The single pixel of an RGB image is represented by 

three colours such as Red, Green, and Blue. It has 8 bit 

monochrome standard consisting of 24 bist/pixel representing 

8 bist for each color (Padmavathi et al., 2016) [43].  

 

 
 

Fig 2: RGB Pixel Representation 
 

The captured photographic images has to be converted in to 

another form, by image pre-processing techniques to 

minimize the noises and interferences for getting noiseless 

and enhanced image of interest. (Fig. 02). It involves multiple 

collection of techniques such as Image filtering, Image 

segmentation (Color mapping, Clustering), Edge detection 

(Fig. 03). These techniques removes the noise in original 

image and improves the quality and visual appearance of 

image making it better for image analysis Visible or RGB 

imaging is widely regarded as a highly effective imaging 

technique for plant stress-related studies. This approach 

provides valuable insights by analyzing crop canopy coverage 

and the colour of the surface canopy (Lee et al., 2013) [29]. 

(Bendig et al., 2015) [3] estimated the biomass (R2 = 0.9) of 

maize at early stages by using RGB vegetation indices 

through combined linear regression models.
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1. Image Filtering 

Original image 

 

Filtered image 

 

 

2. Image Segmentation – a) Color mapping 

Original image 

 

Red Channel 

 

Green Channel 

 

Blue Channel 

 
Noise free Red 

 
 

Noise free Green 

 

Noise free Blue 

 

Filtered RGB Image 

 

b) Clustering 

 

3. Edge detection 

 
 

Fig 3: The picture represents RGB Image Pre-processing of original image to processed image (Padmavathi et al., 2016) [43] 
 

Through, hyperspectral imaging, the reflectance spectroscopy 
can me analyzed from each spatial element of the image. 
Hyperspectral images are more advantageous when compared 
with multispectral images due to higher band formation, 
better spatial resolution and in accurate capturing of spectral 
characteristics of crops. The future trajectory of crop 
phenotping research employing UAV-Rs lies in the adoption 
of hyperspectral imaging technology. However, additional 
research is needed to explore the applicability of physical 
inversion models based on hyperspectral remote sensing, 
comprehend the intricate mechanisms of mixed spectral 
decomposition models for various field components such as 
crops, soil, etc. and develop improved methods for element 
extraction. Hyperspectral imaging in recent years has become 
a widely used approach for acquiring crop traits, including 
crop water content, leaf nitrogen concentration, chlorophyll 
content, LAI (Leaf Area Index), and various other physical 
and chemical parameters and in the prediction of crop yield 
(Yang et al., 2017) [63]. 
 
Thermal imaging  
Thermal imaging relies on alterations in plant respiration and 
evapotranspiration, induced by diseases, which subsequently 
result in significant changes in thermal emissions (Nicholas 
2004) [41]. Imaging the crop canopy can detect the 
modifications in radiative properties of plant canopy resulted 
due to the pathogen. The radiometric expressions of crop 
pathological studies can be categorized in to two types such as 

due to modifications of plant-water status and senescence 
symptoms occurred in plant due to pathogen. The change in 
plant water relationship due to pathogen attack results in the 
reduction of leaf stomatal conductance, decreasing the 
transpiration, altering the evapotranspiration correlated with 
an increase in plant surface temperature. This increased 
surface temperature can be attained by measuring the 
radiative energy emitted by leaf surface in the thermal 
infrared spectral in the range between 8-14 µm (Nicholas 
2004) [41]. Some of the leaf modifications of pathogen related 
indicates lower height and density of plants, change in leaf 
angle, leaf curling, premature abscission of lower leaves 
(Nicolas, 2004 and Nilsson, 1995) [41, 42]. Stomatal 
conductance is an important traits that assist drought 
avoidance contributing to drought tolerance. Plant can 
minimize water loss during drought by regulating 
transpiration through stomatal conductance (Upadhyaya et al., 
2012) [55]. By using infra-thermo camera plant canopy 
differences (Fig. 04) can be quantified and are shown to be in 
strongly correlation with transpiration status in potatoes, rice, 
wheat and sugar beet (Fukuoka, 2005) [14]. The thermal 
digitized image of the plant canopy can be obtained in a short 
time of within one minute. UAV-Rs equipped with infrared 
thermal imagers offer a fast and non-destructive method to 
obtain crop canopy temperature with in short time with 
thermal sensitivity exceeding 80 mK. Therefore enabling the 
effective identification of temperature differences within crop 
canopy under different environmental conditions.  
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Fig 4: Canopy imagery of Chickpea captured by Infra-Thermal camera indicating A. Cooler canopy and B. Warmer Canopy (Upadhyay et al., 

2012) [55] 
 

LIDAR and SAR 

Light Detection and Ranging (LIDAR) is an active sensor that 

emits its own energy source for illumination, distinguishing it 

from other sensors. Its ability to operate at night time 

significantly enhances its utility. This technique has also 

found application in pant high-throughput phenotyping 

research (Andujar et al., 2019) [1]. By utilizing LIDAR, it 

becomes possible to obtain the three-dimensional structure of 

the canopy. Plant canopy height and above-ground biomass 

can be estimated based on the data collected by this sensor 

(Wang et al., 2017) [58]. Synthetic Aperture Radar technology 

is an active micro-sensor which is of two types i.e., focused 

and non-focused. It has the capability to acquire high 

resolution radar images comparable to optical images even in 

adverse weather conditions with low visibility. It can operate 

continuously enabling round the clock monitoring. SAR is 

used for various applications in crop phenotyping such as 

crop identification, monitoring crop acreage, estimation of 

key crop traits and yield prediction. It offers robust technical 

support for remote sensing-based large-scale crop growth 

monitoring.  

The traditional methods used to obtain remote sensing images 

of Earth’s surface by satellites often fell short in providing 

sufficient spatial and temporal resolutions (Nebiker et 

al.,2008) [39]. In moderm times these challenges can be 

effectively addressed throught the utilization of low-cost and 

flexible unmanned platforms, such as UAV-Rs. These 

platforms can provide practical solution to achieve improved 

spatial and temporal resolutions for remote imaging 

applications (Nex et al., 2014 and Colomina et al., 2014) [40, 

10]. On the other hand, the quality of the acquired images can 

be affected by various factors such as wind speed, flight 

altitude and speed, sensor performance, aircraft vibration and 

image correction methods. Therefore, it is essential to explore 

strategies that ensure high-quality image acquisition. Efficient 

processing of large-scale remote sensing data obtained from 

UAV-Rs continues to be a challenge, and in developing the 

robust and fast algorithms tailored to specific sensors used.  

 

Applications of UAV-Rs based Crop phenotyping 

The utilization of unmanned aerial vehicle based remote 

sensing imaging has rapidly gained traction as an advancing 

technology in recent years, finding widespread application in 

crop monitoring. This technology offers numerous advantages 

such as high efficiency, more spatial and temporal resolution 

and low cost (Holman et al., 2016) [22]. Since, 2010, high-

throughput phenotyping by UAV-Rs has been introduced to 

precision agriculture (Sankaran et al., 2015) [49] in a range of 

applications like crop geometric traits (Yang et al., 2017) [63], 

Bio-physical traits and vegetation indices, plant growth 

monitoring, Weed management, Nutrient deficiency, Abiotic 

and Biotic stresses (Yuan et al., 2016) [65] and crop yield 

prediction (Zhou et al., 2017) [71]. 

 

Plant density and lodging assessment 

Crop emergence and plant density are the important 

physiological traits in the estimation of crop yield. The 

conventional method for obtaining plant density is based on 

labour intensive and time-consuming visual counting on 

ground. In order to overcome this challenge, UAV-Rs image-

based methods are developed for high resolution crop 

segmentation. Feng et al., 2023 [13] developed UAV-Rs 

multispectral image-based cotton seedling stand count 

estimation using different algorithms such as YOLOv5, 

YOLOv7 and Center Net. Jin et al., 2017 [25] utilized high 

resolution RGB imagery to estimate the plant density of 

wheat at the emergence stage. Chu et al., 2017 [9] estimated 

Lodging severity of maize crop by using UAV-Rs based on 

height percentile against preset threshold through models of 

multiple grid lines.  
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Fig 5: Example of Rice plant seedling count annotated manually (Left) and by UAV-Rs based RGB Imagery (Wu et al., 2019) [62] and 

estimation of lodging in maize by Chu et al., 2017 [9]. 

 

A machine vision-based method is developed by Lu et al., 

2016[33] for automated estimation of wheat plant density. The 

potential of UAV-Rs imaging systems in capturing high-

resolution RGB images for the detection and estimation of 

crop stand counts in various crops has been demonstrated in 

corn (Vong et al., 2021) [57], Wheat (Schirrmann et al., 2016) 
[50], Cotton, Potato (Li et al., 2019) [30], Rapeseed (Zhao et al., 

2018) [69], Sorghum (Ghosal et al., 2018) [16] and Rice (Wu et 

al., 2019) [62] [Fig. 05]. In barley, distinct phenological events 

are detected by UAV-Rs based RGB imagery by Burkart et 

al., 2018 [6]. 

 

Detection of Crop Geometric and Quantitative traits  

By using the image analysis acquired by UAV-Rs, crop 

geometric traits can be rapidly obtained which includes as 

following. 

 

a) Plant height  

Plant height is the important parameter that is affected by the 

availability of water and impacts lodging, radiation 

interception of the plant. To extract the plant height from 

RGB images includes Digital Surface Model (DSM), Digital 

Terrain Model (DTM), Crop Surface Model (CSM)(Holman 

et al., 2016, Guerra et al., 2016, Pena et al., 2018) [22, 19, 44]. It 

can be extracted from digital images through 

Photogrammetric point clouds (Khanna et al., 2015, Malambo 

et al., 2018) [28, 34]. 

 

b) Ground canopy cover (GCC) 

GCC is associated with photosynthesis and area subjected to 

transpiration capacity of plant (Mullan et al., 2010) [38]. The 

data extracted at the pixel-level from high-resolution images 

acquired by UAVs yielded superior results in estimating 

Ground Canopy Cover (Sankaran et al., 2015) [49]. By using 

UAV-Rs based RGB imaging chu et al. 2016 analyzed cotton 

plant height and demonstrated the potential of RGB imagery 

in estimating canopy cover by an empirical model which 

showed a strong correlation (R2 = 0.99) with the observed 

canopy cover.  

 

c) Biomass  

Plant Biomass is one of the critical trait for yield prediction. It 

can be ascertained by plant dry weight, plant height, leaf area 

index and above ground canopy (Feng et al., 2021) [12] UAV-
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Rs based RGB imagery is used to obtain biomass by the 

application of 3D data (Kachamba et al., 2016) [27]. Highly 

accurate above ground biomass of rice crop is estimated by 

combining normalized difference vegetation indices obtained 

through multispectral imagery and multivariate regression 

model (R2 =0.78) (Zheng et al., 2019) [70]. The above ground 

biomass of winter wheat is estimated by spectral information 

through hyperspectral images (Yue et al., 2018) [64]. The 

accuracy of the biomass is increased when estimated with 

spectral indices combined with plant height. 

 

Leaf area index (LAI) 

LAI is the major functional trait that is related to energy 

intercepted, net primary production, nutrient use efficiency, 

water use efficiency and carbon balance of the plant. Mathews 

and Jensen 2013 estimated LAI of vineyard through RGB 

images. LAI can be quantified by remote sensing through 

statistical, optical and radiation transmission models based on 

spectral reflectance and vegetation indices obtained through 

hyperspectral imagery. (Lu et al., 2016) [33].  

 

d) Yield  

Yield can be quantified by combining physiological 

parameters such as chlorophyll content, biomass, LAI and 

Vegetation indices. Wang et al., 2017 [58] developed yield 

estimation model by using UAV based hyperspectral imaging 

and signified the correlation (R2 =0.78) between NDVI at the 

booting stage with the yield. The linear regression analysis of 

crop height and vegetation indices of multispectral are used to 

estimate yield by Maresma et al., 2016 [35]. 

 
Table 1: Some of the widely used vegetation indices by UAV-Rs platform (R = Reflectance) 

 

Vegetation Indices Formula Associated traits References 

Normalized Difference 

Vegetation Index 
NDVI =

NIR − RED

NIR + RED
 LAI, Yield, Biomass, Canopy senescence Lopes et al.,2012 [32] 

Green Normalized Difference 

Vegetation Index 
GNDVI =

NIR − GREEN

NIR + GREEN
 

LAI, Nitrogen content, Protein content, Water 

content, Chlorophyll content 
Yang et al., 2017 [63] 

Difference Vegetation Index DVI = NIR − RED Nitrogen, Chlorophyll Jordan 1969 [26] 

Green Red Vegetation Index GRVI =
GREEN − RED

GREEN + RED
 Phenological indicator Motohka et al., 2010 [37] 

Enhanced Vegetation Index 

EVI

=
2.5(NIR − RED)

(NIR + 6RED − 7.5BLUE + 1)
 

Biomass related traits with eliminated 

background soil inteferences 
Gurung et al., 2009 [20] 

Chlorophyll Index CI =
NIR

GREEN
−  1 Nitogen estimation of plant Daughtry et al., 2000 [11] 

Chlorophyll Index at red edge CIRI = (R800 − R705) −  1 Chlorophyll Zang et al., 2018 [68] 

Optimized Soil Adjusted 

Vegetation Index 
OSAVI =

1.16(R 800 − R 670)

(R 900 + R 670 + 0.16)
 

Accurate crop growth monitoring with 

eliminated interference of aerosols 
Yang et al., 2017 [63] 

Photochemical Reflectance 

Index 
PRI =

(R 750 − R 670)

(R900 + R 670 + 0.16)
 

Water status, chlorophyll content, Nitogen 

estimation 
Suarez et al., 2009 [53] 

Plant Senescence Reflectance 

Index 
PSRI =

(R 690 − R 500)

R550
 

Leaf and Fruit senescence, Chlorophyll and 

Nitrogen 

Zang et al., 2018: Yu et 

at., 2018 [68, 64] 

Effective Leaf Area Index ELAI = −0.441 + 0.285
NIR

RED
 Yield estimation Wojtowicz et al., 2005 [61] 

Vegetation Drought Index VDI =
(R970 − R900)

(R970 − R900)
 Water stress Suarez et al., 2009 [53] 

Heavy metal stress sensitive 

index 
HMSSI =

CIRE

PSRI
 Detection of Heavy metals Zang et al., 2018 [68] 

Anthocyanin Reflectance Index ARI =
R550 − 1

R700 − 1
 Detection of Anthocyanin and Cadmium Stress Zea et al., 2022 [67] 

 

Spectral Vegetation indices and physiological traits 

Spectral Vegetation indices are the key traits for estimating 

Plant Canopy cover associated traits such as Active 

photosynthetic tissue, above ground biomass, Leaf area Index, 

Nitrogen content, Plant nutrients status, and yield prediction. 

An index is obtained by doing a sum/ difference/ ratio of 

reflectance at different wavelengths. The photosynthetically 

active tissue typically show absorption in visible region with 

the reflectance in infrared region. A large number of spectral 

vegetation indices (Table 1) can be easily derived by 

multispectral and hyperspectral images through different 

statistical empirical models and the key crop traits such as 

LAI, Crop canopy cover, Biomass, Yield prediction, Plant 

water status, Chlorophyll and Nitrogen content can be 

estimated the physiological parameters are the key traits in 

discerning crop growth changes in response to environment 

and in estimating yield of the crop. The important traits that 

are dissected through UAV-Rs includes Chlorophyll content 

and canopy temperature. Chlorophyll content can be 

estimated by vegetation indices based on linear regression 

model. Uto et al., 2013 [56] estimated the highly accurate rice 

chlorophyll denities using hyperspectral imaging in the range 

of 340nm to 763 nm. The leaf carotenoid content, net 

photosynthesis and the correlation between chlorophyll 

fluorescence and net photosynthesis in vineyard is 

demonstrated by high resolution hyperspectral imaging 

(Zarco-Tejada et al., 2013) [66]. Crop canopy temperature is 

one of the major physiological trait in identifying drought and 

thermo tolerant varieties. It determines s the transpiration rate, 

stomatal conductance and leaf water potential during water 

stress conditions (Zang et al., 2018) [68]. 

The water stress of cotton crop is assessed using UAV-Rs 

thermal imagery at 0.01-m resolution (Bian et al., 2019) [5]. 

Upadhyaya et al., 2012 [55]. Quantified plant canopy 

temperature differences in chickpea by using an infra-thermo 

camera. Sagan et al., 2019 [48]. evaluated the potential of 

thermal camers in detecting vegetation stress. 
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Abiotic and Biotic stress related traits 

In the scenario of the climate change, Plant in its life cycle 

faces several abiotic and biotic stress conditions. Abiotic 

stress includes drought or water deficit, heat, salinity, chilling 

and freezing injury and heavy metal stress. Drought is the 

most significant factor constraining yield. Therefore, it is 

essential to comprehend and identify drought stress in crops 

to enhance water use efficiency. Instead of monitoring plant 

physiological traits resulted in response to drought by 

traditional techniques, by scrutinizing the leaf metabolite 

concentrations through leaf reflectance spectroscopy 

properties of plants that undergone stress, one can estimate 

the drought stress. Burnett et al., 2021 [7] for the first time 

uncovered the use of hyperspectral data in detecting stress 

induced abscisic acid phytohormone and proline. Through 

spectroscopy, the drought stress can be detected even before 

the visual appearance of drought stress in plants. Therefore, 

representing a powerful technology in reducing yield 

limitations. Gibson-Poole et al., 2017 [17] evaluated the 

occurence of potato blackleg bacterial disease by using RGB 

imagery technology. The potassium deficiency and 

susceptibility of green peach aphid is quantified by 

multispectral images in canola (Severtson et al., 2016) [51]. In 

addition to this detection of disease stress can be monitored 

commonly by multispectral, hyperspectral and infrared 

imaging technology.  

 

Future aspects 

The studies mentioned above have demonstrated the 

effectiveness of UAV-based remote sensing for high through-

put plant phenotyping. However, there are several challenges 

that need to be addressed to translate this to real world 

applications. To strengthen UAV-based remote sensing for 

plant phenotyping, future studies should focus on introducing 

low-cost and high-performance UAVs with stable flight 

capabilities and high-performance phenotyping sensors. 

Sensor based analysis of crop phenotyping can enhance 

accuracy. Establishing multi-parameter prediction models for 

crop yield and improving data analysis methods will aid in 

extracting more traits supporting precision crop management. 

To deepen our understanding, further research should delve in 

to the connection between genotype, phenotype, and 

environment, exploring gene-phenotype relationships through 

quantitative trait locus and genome-wide association studies. 

By fostering collaboration among researchers, institutes and 

countries, the field of UAV-based remote sensing for plant 

phenotyping can advance collectively, leading to significant 

progress in precision agriculture and sustainable crop 

management. 

 

Conclusion  

In conclusion, unmanned aerial vehicle remote sensing 

(UAV-Rs) has emerged as a powerful tool for high-

throughput plant phenotyping, offering various advantages 

such as high efficiency, low cost, and adaptability to complex 

field environments. Different sensors, including RGB, multi-

spectral, hyperspectral, infrared thermal imaging, LIDAR, and 

fluorescence sensors, have been used to gather plant 

phenotypic information, enabling the analysis of traits like 

plant height, LAI, biomass, yield, weed detection, and 

physiological parameters. While UAV-Rs shows great 

promise, challenges remain in reducing influencing factors 

and optimizing UAV flight parameters for improved 

efficiency. Nevertheless, with advancements in UAV 

capabilities, sensor technology, data processing methods, and 

regulatory policies, UAV-Rs is poised for broader and more 

impactful applications in field-based crop phenotyping. 
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