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Comparing various exponentiated distributions 

through suitable illustration 

 
TA Raja, S Maqbool and Fehim Jeelani 

 
Abstract 
Discussions were held about extended exponentiated weibull, extended exponentiated exponential, 

extended exponentiated lognormal, and extended exponentiated gumble distributions. Contrary to the 

weibull model, the two parameter exponentiated weibull can fit unimodel, monotone, and risk functions. 

Exponentiated exponential may be utilized as an alternative to weibull distribution and, in certain 

situations, has a better fit than weibull due to its shape and scale parameters. Better fits may be obtained 

using the unimodel distributions 3 parameter exponentiated lognormal and 2 parameter exponentiated 

gumble. For lifetime data, the extended exponentiated exponential distribution gives more flexibility. 

Maximum likelihood estimation is utilized for parameter estimation. Statistics for goodness of fit are 

shown for a collection of data. 

 

Keywords: exponential, weibull, lognormal, gumble, maximum likelihood estimator, exponentiated 

exponential, goodness of fit 

 

Introduction 

The weibull distribution is most prevalent distribution for analyzing life time data. The study 

of survival data, mostly from the fields of engineering, agriculture, veterinary medicine, and 

medicine, has often utilized the weibull set of distributions. With the suggested exponentiated 

weibull distribution, Mudhokar et al. (1995) [2] and Mudhokar and Srivastava (1993) [1] have 

produced a number of failure time data sets. When applied to the weibull and exponential 

families of distributions, A. Marshall and I. Olkin's innovative approach for including a 

parameter to a family of distributions was first presented in 1997. A particular example of the 

generic class of exponentiated distributions suggested by Gupta et al. is the exponentiated 

weibull distribution (1998). Exponentiated exponential distribution may be utilized as an 

alternative to the two parameter gamma and weibull distribution, according to Gupta and 

Kundu's (2001) [4] presentation of the distribution and analysis of different lifetime data sets. 

Exponential gumble distribution for the survival function was first developed by Nadarajah 

(2005) [5]. He gave an example of how it may be used to predict rainfall data from Orland, 

Florida. Exponentiated lognormal distribution suited real-world data sets better than weibull 

and exponentiated exponential distribution, according to analyses by Kakade and Shirke 

(2006) [6]. Exponentiated lognormal distribution is regarded as a good substitute. To evaluate 

data that were favourably skewed, Kakade and Shirke (2007) [7] explored the exponential 

gumble distribution. On the extension of various exponentiated distributions with applications, 

Raja and Mir (2011) [8] made a contribution. Effective estimate of the cdf and pdf of the 

exponentiated gumble distribution was the focus of Bagheri et al. 2016’ [10] research (2014). 

The exponentiated exponential distribution was extended by Abu-Youssef et al. (2015) [9], 

providing a more practical model for lifetime data sets. The shortened life test for the 

exponentiated exponential distribution was developed by Suresh and Usha in 2016. In 2019, 

Raja and Maqbool expanded the use of Poisson and Poisson Type distributions. The 

exponentiated gumble distribution has a superior fit and may be utilized instead of the weibull 

distribution, according to Malik Mansoor and Kumar Devendra's (2020) [13] study of the 

weibull model. Exponentiated exponential distribution offers a comparably better fit in the 

current investigation than three parameter weibull and exponentiated gumble. 

In this study, we take into account each of these distributions individually and compare those 

using actual data. 
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Exponentiated Weibull Distribution  

Probability density function 
The “exponentiated weibull distribution's probability density 

function (P.d.f.) as examined by Mudhokar et al. with the 

parameters  and,,  and life time having a function like,  
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Where α >0, θ>0 are shape parameters and σ >0 is a scale 

parameter. 

When θ=1 and when α=1 and θ=1, it follows the exponential 

distribution and the weibull distribution, respectively. 

The random variable T's survival function with 

exponentiated-Weibull density is as follows: 

 

 
 

The model can easily fit survival data. 

 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  a sample drawn at random from EW, 

the log probability may be as L (  ,, )=n. log (αθ/σ)+(θ-1). 
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Where, 

g(Ti)=g(Ti;α,θ)=1-exp(-T/σ)α  

 

We may distinguish (1.1) in terms of three parameters. 
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From (1.4), (1.5) and (1.6) we achieve the ML Estimates. 

 

Exponentiated Exponential 

Probability density function 
Gupta and Kunda (2001) [4] defined density function with the 

parameters λ and α as 
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Where 0,, x  

The shape parameter in this example is α and the scale 

parameter is λ. When α =1, the exponential family is 

represented. 

 

 

The survival function is given as 
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An parallel system is represented as an exponential with 

exponents. 

 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  be a random sample from EE the log 

likelihood can be as. 

 

  

Therefore in order to get MLE’s of α and λ we can maximize 

(2.3) with respect to α and λ or we solve the non-linear 

normal equations as:- 
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We obtain the MLE of α as a function of λ, say α ),( ^  from 

(2.4) as 
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The” MLE of the shape parameter may be 
^ derived simply 

from the scale parameter if it is known (2.6). If both 

parameters are unknown, it is possible to immediately 

maximise L(α ),( ^  λ) with respect to λ get the scale 

parameter's estimate first. When 
^ is achieved 

^ , it is also 

possible to do such as from (2.6) as α^ ),( ^  

 

Exponentiated Lognormal Distribution 
^  

Probability density function 

With regard to three parameters
),,( 

, the exponential 

lognormal distribution's density function is defined “as  

 

 
  

 x, α >0, -     

 

Where, ),);((  xIn  and );(( xIn  are the C.d. f and 

P.d.f of the normal distribution with mean and standard 

deviation as µ and σ. 

The following is the survival function that corresponds to the 

exponentiated lognormal distribution density: 

S(x, µ σ. α) =1- ( ),);((  xIn ) α 
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Where x >0 

 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  a random sample drawn from the EL 

distribution the following is the log likelihood function: 

 

 
 

We solve the following equations to get the values of the 

parameters  ,,  that maximize L (  ,, /x): 

 

 
 

From (3.3), (3.4) and (3.5) MLE of α, µ and σ is obtained 

respectively. 

 

Exponential Gumble Distribution 

Probability density function 
The Probability density function (P.d.f) of exponential 

gumble distribution  

Introduced by Nadarajah (2005) [5] with parameters α and σ is  
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Where α, σ>0 and -  x  

Where the scale parameter is σ and the shape parameter is α. 

When α=1 in this case, the distribution eases to the standard 

gumble. 

 

The provided survival function is 
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The α th power of the gumble distribution's survival function 

is the survival function of the exponentiated gumble 

distribution. 

 

Maximum Likelihood Estimators 

Let nxxxx .......,, 321  be a random sample from EG 

distribution the log likelihood function is 

 

 
 

Thus to achieve the MLE’s of α and σ we can maximize (3.3) 

with respect to α and σ or and solve the non-linear normal 

equations as:- 

 

 
 

From (4.4) and (4.5) MLE of α, and σ is attained. 

 

5. Extended Exponentiated Exponential Distribution:- 

Let X be a random variable with survival function F¯(x), the 

survival function is as: 

 
G¯(x) = λF¯(x) / (1 − λ¯F¯(x)), −∞ < x < ∞, λ > 0, λ¯ = 1−λ. (5.1) 

 

Abu-Youssef et al. (2015) [9] introduced a new variant of the 

Marshall-Olkin extended family of distributions by selecting 

in (5.1) the exponentiated exponential distribution with 

survival function which yields  

 

G¯(x) = λ − λ (1 − e −βx) α λ + λ¯ (1 − e −βx) α, x > 0, α > 0, 

λ > 0, β > 0 ……. (5.2) 

 

Maximum likelihood estimators 

Let X1, X2, Xn is a random sample of size n from the 

Marshall OLKIN Extended Exponentiated Exponential 

distribution then the likelihood function is:- 

 

Ln (α, β, λ)=∏  𝑔𝑛
𝑖=1 (xi, α, β, λ) = ∏

αβλ(1 − e −βxi ).α−1.e −βxi 

(λ¯(1 − e −βxi) α + λ) 2
…. (5.3) 

 

and the log- likelihood function will be 

 

 
 

The Maximum Likelihood Estimation (MLE) of α, β and λ are 

obtained from  

∂L/∂α = 0,  

∂L/∂β = 0, and 

∂L/∂λ = 0. 

 

Goodness of Fit 

Eight models gumble, weibull, exponentiated weibull, 

lognormal, exponentiated lognormal, exponentiated 

exponential, exponentiated gumble and extended 

exponentiated exponential were applied to real time data sets. 

Following are the distributions and the pdf: 

 

Distribution P.d.f 

Weibull  f(x, α, λ) = αλ
1)( x .

 )( xe 
; α, λ, x >0 
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Exponentiated gumble 

   ,.exp),;( 
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Extended Exponentiated exponential f(x) = αβλ(1 − e −βx) 

α−1 e −βx (λ¯(1 − e −βx) α + λ) 2, x > 0. 

 

Data Set 1 
The data” pertains to survival times (in days) of 36 bacilli 

infected lambs.  

0.59, 0.51, 0.63, 0.77, 0.91, 0.93, 0.96, 1, 1, 1.02, 1.05, 

1.07,.08,.08, 1.08,1.09, 1.09, 1.12, 1.13, 1.61, 1.72, 1.66, 1.83, 

1.95, 1.93, 1.90, 2.02, 2.13, 2.23, 2.16,2.18, 2.30, 2.31, 2.40, 

2.45, 2.53

Table 1: Distribution along with MLE’s, Log-likelihood and Anderson’s value. 
 

Distribution MLE’S Log likelihood Anderson’s Value 

Weibull α^
=0.674, λˆ=0.018 -142.75 0.069 

Lognormal μˆ=2.352, λˆ=1.292 -143.37 0.065 

Gumble α^
=22.94, λˆ=45.84 -141.34 0.062 

Exponentiated weibull α^
= 2.456,θˆ= 0.237 σˆ=23.87 -139.11 0.057 

Exponentiated exponential α^
=0.762, λˆ=0.017 -147.63 0.079 

Exponentiated lognormal α^
= 0.115 μˆ= 3.56 σˆ=0.453 -143.82 0.055 

Exponentiated gumble α^
=1.57, λˆ=42.56 -142.72 0.054 

Extended exponentiated exponential α^
=0.765, β= 138, λˆ=0.0145 -129.65 0.051 

 

The following tables gives a comparison between the MLE’s 

Log-likelihood, and” Anderson’s statistics. 

 

Conclusion 

We compared the exponentiated weibull, exponentiated 

lognormal, extended exponentiated exponential, 

exponentiated exponential, and exponentiated gumble 

probability density functions and their applications to a set of 

data. Contrary to the weibull model, the 2 parameter 

exponentiated weibull can fit unimodel, monotone, and risk 

functions. Exponentiated exponential may be used as a 

replacement for weibull distribution and, in many situations, 

has a better fit than weibull due to its similar shape and scale 

parameters. The unimodel distributions 2 parameter 

exponentiated gumble and 3 parameter exponentiated 

lognormal may provide superior fits. The extended 

exponentiated exponential distribution with three parameters 

provides a more adaptable model for real-time data sets. 

Exponentiated exponential provides a superior match for the 

data set, followed by weibull. Therefore, in certain 

circumstances, they may be substituted as alternatives to one 

another. One can try other suitable distributions depending 

upon the flexibility. 
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