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Abstract 
Marine resources are treasure for the research, since they can synthesize a group of secondary 

metabolites associated with promising biological activities. Nearly all marine habitats, from the deep sea 

to surface waters, have been discovered to contain bioactive metabolites. Algae, Fungi, Bacteria etc are 

the huge source of such bioactive compounds. But utilisation of such compounds still a topic of research 

as they are not easily absorbable in human bloodstream. These compounds act as reducing agent and 

forms conjugate with metal oxide, silver, gold, chitosan, zinc and etc. The objective of this chapter was to 

make readers understand about the marine metabolites including phenolic, flavonoid and carbohydrate 

which shows significant antimicrobial activity against differential microbes and their efficiency in 

synthesizing nanoparticles. 
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Introduction 

Bioactive compounds from algae, bacteria, and plants are Secondary metabolites produced by 

them for defence mechanism. Phenolic compounds are among the bioactive substances that are 

abundant in the marine environment. One of the most frequently accepted ideas explaining 

why marine plant (seaweed) tissues develop and accumulate phenolic compounds is that these 

substances are produced as a defensive mechanism against biotic and abiotic stimuli. There are 

various theories explaining why this is the case. It is vital for Seaweeds (macroalgae) to create 

defence mechanisms throughout their metabolic pathways that protect them against the 

environmental stress and biological agents like UV protectant, anti-herbivory, and antioxidants 

in order to adapt and survive in a very competitive and difficult marine environment [1]. 

Distinct genera of seaweed have different phenolic chemical types and compositions based on 

their habitat. Brown, green, and red seaweed are few examples that are used to separate and 

describe several phenolic component types [2]. These bioactive compounds shows several 

biological properties such as antioxidants [3], anti-inflammation [4], antimicrobial [5], 

anticoagulant [6], anticancer agents [7], antidiabetic [8], and etc. However, little is known about 

how these metabolites are absorbed, distributed, and eliminated from individuals. The amount 

of a bioactive molecule that can enter the bloodstream is known as bioavailability. The 

primary issue that must be taken into account when creating functional foods is the 

bioavailability of these metabolites. After consumption of metabolites through our food meals, 

these must pass through intestines, stomach, and mouth to enter the circulation; such is poor 

penetration, uncontrolled release in the stomach and small intestine, and degradation are the 

main barriers for the absorption of these from the intestine epithelium to the bloodstream [9]. 

Nanocarriers have been shown to be a promising choice for enhancing the bioavailability of 

these metabolites. That could be the possible solution to overcome the bioavailability issue [9]. 

The aim of this chapter is to make readers understand the antimicrobial properties of marine 

metabolites against pathogenic bacteria’s and the role of metabolites in nanotechnology. Such 

knowledge is important for the development of antimicrobial compounds for preservation of 

health-promoting functional foods and for several biological application. 

 

Metabolites in marine resources 

Phenolics 
Phenolic compounds has significant contribution to the growth and survival of organisms, as 
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well as their assistance in the defence against infections and 

predators, they are found in a huge range of terrestrial and 

marine plants. Following the pentose phosphate, shikimate, or 

phenylpropanoid routes, these substances can be produced. 

Lignan is a phenolic molecule that is created when p-

coumaryl alcohol and monolignols combine to form a dimer 

or oligomer. Contrary to popular belief, it has also been found 

in calcified intertidal red seaweed Calliarthron 

cheilosporioides Manza which was previously assumed to 

only exist in terrestrial plants [10]. Algae are a diverse and 

complicated class of organisms distinguished by their ability 

to photosynthesise and their uncomplicated reproductive 

system. They are categorised into four classes based on the 

colours they contain: Cyanophyta (blue-green algae), 

Rhodophyta (red algae), Phaeophyta (brown algae), and 

Chlorophyta (green algae). As a result of their varied habitats 

and exposure to harsh climatic circumstances, marine algae 

create a large range of physiologically active metabolites that 

are not present in any other species. As chemical defence 

mechanisms, these metabolites help algae survive in 

conditions with intense competition [11]. 

Tannins, a common family of phenolic compounds found in 

many terrestrial plants, have drawn a lot of attention in recent 

years due to their strong antioxidant capacity. Hydrolyzable 

tannins also known as pyrogallol-type tannins, basically 

derived from simple phenolic acids such as gallic or ellagic 

acid, are molecules with a polyol (generally D-glucose) as a 

central core. These carbohydrates' hydroxyl groups undergo 

partial or complete esterification with phenolic groups like 

gallic acid (gallotannins) or ellagic acid (ellagitannins). These 

tannins produce gallic or ellagic acid when heated with 

sulfuric or hydrochloric acid. They can be found in some 

varieties of green algae and are typical in angiosperms [12]. In 

Western nations, algae are an underappreciated source of 

phenolic compounds since they are typically seen as marine 

garbage. Their consumption is expanding as a result of current 

diet trends based on functional foods. Bifurcaria birfurcata 

has 9.6 mg PGE/g of phenolic content followed by 

Chlamydomonas reinhardtii 150 mg GAE/g, Chlorella spp. 

58.2 mg GAE/g, Enteromorpha intestinalis 0.03 mg GAE/g, 

Fucus spp. 28.2–204.2 mg PGE/g, Himanthalia elongate 

151.3 mg GAE/g, Nannochloropsis spp. 33.2 mg GAE/g, 

Padina pavonica 20.3 mg GAE/g, Phormidium valderianum 

0.97 mg GAE/g, and Spirulina platensis 2.4–5.0 mg GAE/g 
[13-19]. From the ethanol and dichloromethane extracts of P. 

boryana and A. spicifera, respectively, Hassan et al. isolated 

two polyphenolic substances known as ellagic acid and 

velutin [20]. After being subjected to HPLC anlysis, several 

phenolic components, including ellagic acid and gallic acid, 

which had the highest amounts of 19.05 and 18.36 µg/mL, 

respectively, were found in Amphiroa anceps extract after 

being subjected to HPLC analysis [21]. 

 

Flavonoids 

In the polyphenol family, there are several bioactive natural 

chemicals, but flavonoids are the most numerous and 

diversified group [22]. Numerous plant taxa, including 

bryophytes (liverworts and mosses), ferns, gymnosperms, and 

angiosperms have produced more than 4,000 flavonoids. The 

most primitive plant species that contain flavonoids are green 

algae [23]. Research on the production of flavonoids in plants 

is widespread. Because algae have a long evolutionary 

history, one can speculate that their metabolic pathways for 

flavonoid production are distinct from those of higher plants. 

However, the discovery of caffeine in Chlamydomonas 

eugametos disproved the aforementioned hypothesis [24]. 

According to a study by Goiris et al., microalgae contain 

many flavonoids and intermediaries that are involved in the 

formation of flavonoids. Phloretin and dihydrochalcone, 

which were discovered in Diacronema lutheria, may be 

products of the intermediates in the production of flavonoids 
[25]. 

The majority of woody plants, as well as red wine, tea, and 

cocoa beans, contain flavonoid-based condensed tannins, 

polyflavonoid tannins, catechol-type tannins, pyrocatecollic 

type tannins, nonhydrolyzable tannins, or flavolans [26]. They 

produced through the biosynthesis of catechins and flavins. 

Over half of the 8000 naturally occurring phenolic chemicals 

are flavonoids, which make up the biggest group of plant 

phenolics [27]. There have been several studies on the 

flavonoids found in terrestrial plants, but less is known about 

the flavonoids found in algae. A recent analysis of the 

distribution of flavonoids in six Chlorophyta, eleven 

Phaeophyta, and ten Rhodophyta species of marine algae 

revealed that their flavonoid profiles are completely dissimilar 

to those of vegetables and fruits. Macroalgae are abundant 

sources of catechins, flavones, and flavonols, according to 

other studies [28]. Algae have not been identified to contain 

anthocyanins and flavones, in contrast to terrestrial plants [29]. 

In contrast to hydrolyzable or condensed tannins, 

phlorotannins are oligomers of phloroglucinol and are only 

present in brown sea algae [30]. There are two different forms 

of the benzenetriol 1,3,5-trihydroxybenzene also known as 

phloroglucinol; one is phenol-like, and the other is 1,3,5-

cyclohexanetrione (phloroglucin), which is ketone-like. 

Additionally, the phytochemical study of Amphiroa anceps 

revealed the presence of flavonoids, with catechin having the 

greatest content (12.45 g/mL) [21].  

 

Carbohydrates 

Carbohydrates are significant metabolites in marine life, as 

they exhibit antioxidant and immunity boosting properties. 

For example, Trehalose is a disaccharide found in seaweed 

and shrimp that has an anti-aging effect through regulating the 

Nrf2 and insulin signalling pathways. most naturally 

occurring carbohydrates found in marine organisms are 

polysaccharides, with a small number being mono or 

oligosaccharides [31]. 

Alginate, fucoidan, and laminarin are the three primary forms 

of soluble dietary fibre polysaccharides found in brown algae. 

Alginate is made up of polymannuronic acid, polyguluronic 

acid, and a linear synthesis of both of these acids. It exists in a 

variety of forms, including acid and salt, and is regarded as a 

crucial component of the cell wall. Fucoidan has an extremely 

broad and intricate structure, in contrast to alginate and 

laminaran. It is a sulfated polysaccharide that contains various 

monosaccharides along with fucose sugar. Like galactose, 

xylose, glucose, glucuronic acid, and mannose [32]. 

Agar, alginate, carrageenan, and fucoidan like 

Polysaccharides show a variety of physiological properties it 

could be one of the reasons that they are widely used in food, 

agriculture, and health. Nevertheless, their limited application 

is hampered by their weak solubility and low absorption. 

Marine oligosaccharides, which are breakdown products of 

those polysaccharides, have garnered a lot of interest due to 

their clear biological activity, improved solubility, and greater 
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bioavailability [33]. 

In addition, a major portion of hydrocolloids, including agar 

and carrageenan from Rhodophyta, are obtained from algae. 

These hydrocolloids are widely used as thickeners and gelling 

agents in the food industry and have a large market. In 2009, 

their sales with a market value of USD 1018 million [34]. Red 

seaweed has the ability to digest Floridian starch, which is a 

type of amyl that is similar to glucose. Oceanic brown algae 

come in a variety of sizes and shapes and are a type of 

multicellular algae. Brown algae have a high concentration of 

carbohydrates, which make up more than half of their dry 

biomass. Food and alginate extraction is one of the reasons 

why brown algae is being farmed enormously [35]. Omega-3 

fatty acids, chitin, chitosan, algal components, carotenoids, 

and other bioactive chemicals are a few examples of high 

value-added substances with nutraceutical potential that can 

be used as functional additives. Nowadays, polysaccharides 

like chitin and chitosan are becoming more and more popular 
[36]. 

 

Role of marine metabolites in nanoparticle synthesis 

The advancement of numerous industries, including food, 

medicines, nanomedicine, and environmental trends, is 

supported by current marine biology research and the marine 

biology revolution [37]. Oceans cover about 75 percent of the 

earth's surface, wherein around 2.2 million unique species 

have been analysed [38, 39]. The ocean contains a large quantity 

of marine-derived substances having numerous human-valued 

uses, such as antibacterial substances [40]. In the marine 

ecosystem, there are roughly 30,000 biologically active 

compounds with a wide range of uses [41]. Various 

antibacterial, antifungal, and antiviral chemicals are currently 

made possible by the marine environment. Potential sources 

for fighting infectious disorders include seaweeds, bacteria, 

and fungi [42]. There has been a lot of interest in marine-based 

nanoparticles made from a range of marine sources, such as 

bacteria, fungi, marine plants, and seaweeds [43]. Spirulina 

platensis, Ulva lactuca, and Sargassum muticum are examples 

of algae that are viewed as prospective biocatalysts for the 

synthesis of various types of nanoparticles because of their 

rapid cell growth rates, high stress tolerance, and quantity of 

physiologically active chemicals [44]. 

Both intracellular and extracellular inorganic secondary 

metabolites produced by marine bacteria, fungus, and algae 

convert metal ions to generate nanoparticles. Nanoparticles 

are created inside of cells by trapping the positively charged 

metal ions on the surface of the cell wall or/and in the 

cytoplasm that contains negatively charged groups of 

enzymes or proteins. Different types of nanoparticles are 

created as a result of the reduced metal ions being confined 

into tiny nuclei [45]. For instance, it has been shown that 

alkalotolerant actinomycetes, Rhodococcus spp., gold 

nanoparticle production was observed in the cytoplasmic 

membrane and on the surface of mycelia. As a result, the 

cytoplasmic membrane had more gold nanoparticles than the 

cell wall, demonstrating that the interaction of the enzymes on 

the cytoplasmic membrane is what causes the formation of the 

gold nanoparticles [46]. Due to the presence of enzymes on the 

cell wall membrane, silver nanoparticles were synthesized 

when biomass from the Verticillium fungus species was 

exposed to silver ions below the surface of the cell wall [47]. In 

the case of Tetraselmis kochinensis algae, into HAuCl4 

solution, the biomass was added and monitored for the 

synthesis of gold nanoparticles intracellularly. There were 

more gold nanoparticles on the cell wall than the cytoplasmic 

membrane. The cytoplasmic membrane and cell wall enzymes 

were responsible for the creation of the gold nanoparticles [48]. 

On the other hand, microbial surface proteins and enzyme 

secretion are necessary for the extracellular creation of 

metallic nanoparticles. Proteins and DNA are examples of 

macromolecules that are described as assemblies of 

nanoparticles [49]. The necessity of nitrate reductase for the 

reduction of metal ions has been shown. Similar to this, it has 

been discovered that the bacterium Rhodopseudomonas 

capsulata exhibits NADPH-dependent nitrate reductase 

activity for producing gold nanoparticles from AgNO3 [50]. 

When R. capsulata secretes cofactor NADH to NADH-

dependent enzyme, the electron is transferred from NADH to 

NADH-dependent reductase as an electron carrier. Finally, 

the electron is taken in by the gold ions, who then transform it 

into gold nanoparticles. Using an algae Chlorella vulgarris, 

Ferreira and colleagues created extracellular silver chloride 

nanoparticles [51]. Silver nitrate was converted by the 

microalgae into silver chloride nanoparticles. 

Terpenes, acetogenin, pure aromatic compounds, and 

polyphenolic substances found in marine algae, including 

phloroglucinol, eckol, phlorofucofuroeckol A, 

fucodiphlorethol G, 7-phloroeckol, 6,60-bieckol, and dieckol, 

all function as reducing agents during the nanoparticle 

formation process [52, 53]. Gold nanoparticles have been 

synthesized using Sargassum crassifolium, a marine 

macroalgae having a range of polysaccharides and sterols [54]. 

Using Cystoseira trinodis, CuO nanoparticles of about 7 nm 

in size have been bioengineered [55]. Aluminum oxide 

nanoparticles with a size of around 20 nm were created using 

Sargassum ilicifolium. There have been reports of the 

production of gold nanoparticles by a number of algae strains, 

including Turbinaria conoides, Laminaria japonica, 

Acanthophora spicifera, and Sargassum tenerrimum [56]. The 

application of Spriruna plantensis in the synthesis of new 

core (Au)-shell (Ag) nanoparticles has also been investigated. 

Because of its high viscosity, ability to gel, and 

biocompatibility, carrageenan, a high-molecular-weight, 

water-soluble, and sulfated polysaccharide isolated from 

numerous species of red algae, has been widely used in the 

pharmaceutical, medical, and food industries [57]. Kappa-

carrageenan wrapped zinc-oxide nanoparticles (KC-ZnONPs) 

with antibacterial and antibiofilm activities against 

methicillin-resistant S. aureus (MRSA) were by Vijayakumar 

et al. in 2020 [58]. 

It has been documented that marine bacteria can produce 

several kinds of metallic nanoparticles. The production of 

silver nanoparticles by Pseudomonas stutzeri AG259 has been 

documented whereby the produced particles are collected in 

the periplasm [59]. However, the extracellular synthesis of gold 

nanoparticles utilising the cell-free Bacillus marisflavi extract 

has been described [60]. Another study demonstrates that 

thermophilic Bacillus sp. produced extracellular silver 

nanoparticles when combined with the silver nitrate solution 

and incubated at 27 and 50 °C for 48 hours in the dark [61]. 

Silver nanoparticles are synthesized when Nocardiopsis sp. 

MBRC-1 culture supernatant is inoculated with silver nitrate 

solution and cultured in the dark at 30 °C for 96 hrs at (pH 

7.0) [62]. Gold nanoparticles were created during the 

intracellular synthesis, which involved suspending 

Rhodococcus sp. biomass in a HAuCl4 solution and 
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incubating it for 24 hrs at 27 °C and 200 rpm. The membrane 

and cell wall of Rhodococcus spcytoplasmic contained the 

synthesized gold nanoparticles [63].  

There have been reports of both intracellular and extracellular 

metal nanoparticle production in a variety of marine fungus. 

Compared to bacteria, fungi are better able to produce 

metallic nanoparticles since they exude extracellular enzymes 

that enable handling biomass easier [64]. Candida albicans' 

cytosolic extract was used extracellularly to produce gold 

nanoparticles [65]. Additionally, it has been reported that 

Penicillium fellutanum and Phoma glomerata are used in the 

extracellular synthesis of silver nanoparticles [66]. Gold 

nanoparticles have recently been produced intracellularly 

using Penicillium chrysogenum. Gold nanoparticles were 

synthesized after 72 hours of incubation at 30 °C with the 

active biomass of P. chrysogenum inoculated in HAuCl4 

solution [67]. It has been reported that the fungi Candida 

glabrata and Schizosaccharomyces pombe produce cadmium 

sulphide nanoparticles intracellularly. Since the cadmium 

sulphide nanoparticles' concentration is dependent on the type 

of cell, they were synthesized by lysis of cells [68]. 

 

Antimicrobial Activity of Marine Resources-Based 

Metabolites against Harmful Pathogens 

According to estimates, marine bacteria produce around 

50,000 bioactive secondary metabolites. Among the diverse 

marine microorganisms, marine bacteria create secondary 

metabolites that have a variety of biological properties, 

including possible antibacterial properties [69]. Among the 

various marine bacteria phyla researched, Actinobacteria, 

Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, 

and Proteobacteria appear to be the frequently primary 

producers of antimicrobial chemicals [70].  

Gram-positive bacteria called actinobacteria are renowned for 

producing a wide range of valuable secondary metabolites. 

The abundance of actinobacteria in maritime environments 

has a crucial ecological function in the reprocessing of 

resistant biomaterials and the production of various biological 

chemicals with medicinal uses [71]. Streptomyces sp. 1492's 

antibacterial effectiveness was uncovered in 2021 by Quinn 

G. et al. against bacterial diseases such E. faecium, S. aureus, 

and A. baumannii [4]. They additionally demonstrated that the 

chlorocatechelins, a new siderophores with chlorinated 

catecholate complexes and acylguanidine structure isolated 

from Streptomyces sp., suppressed the growth of a wide 

variety of bacterial pathogens [72]. Additionally, a brand-new 

strain of Streptomyces sp. MUSC 125 was found and isolated 

from mangrove soil on Peninsular Malaysia's east coast. This 

strain is capable of generating the broad-spectrum antibiotic 

molecule bacitracin A, which is effective against S. aureus 

ATCC BAA-44 [73]. Other novel bioactive substances, such as 

phenylacetic acid and indole-3-lactic acid, that were isolated 

from Streptomyces CTF9's fermentation broth had potent 

antifungal activity against Candida albicans [74]. 

Marine Secondary metabolites produced by cyanobacteria are 

a rich source of previously well-reported pharmacological 

activity, such as antibacterial, antiviral, antifungal, anticancer, 

and antiplasmodium effects [75]. The unique ambiguine-K and 

M isonitrile isolated from marine cyanobacterium Fischerella 

ambigua (UTEX 1903) has shown good antibacterial activity 

against Mycobacterium tuberculosis with MIC values of 6.6 

and 7.5 µM, respectively [76]. Alkylphenols and anaephenes 

A–C with mild growth inhibition against S. aureus were 

obtained from the cyanobacterium Hormoscilla sp. [77]. The 

anaephenes A, B, and C, at concentrations of 22, 6.1, and 22 

µg/mL, respectively, completely prevented the visible 

development of S. aureus. Aqueous extracts of Spirulina 

platensis and Nostoc ellipsosporum include a number of 

polysaccharides with antiviral properties. Calcium spirulan, a 

sulfated polysaccharide produced from Spirilina plantensis, 

was found to inhibit the replication of measles, HIV-1, herpes 

simplex virus-1 (HSV-1), mumps, polio, and influenza A 

viruses when tested on several cell lines [78]. 

The phylum Firmicutes contains Gram-positive bacteria. The 

most important member of a group of Firmicutes is Bacillus. 

Bacillus sp. may grow swiftly in liquid culture and is 

temperature-tolerant. Typically, marine sand samples and 

other marine ecosystems contain Bacillus species [79]. A 

unique oxatetracyclo ketone antimicrobial complex isolated 

from B. stercoris MBTDCMFRI Ba37 strain showed growth 

inhibition of aquatic bacterial, Aeromonas and Vibrio [80]. 

Micrococcin, discovered by Wang et al. in 2021, is a member 

of the thiopeptide class of antibiotics isolated from marine B. 

stratosphericus and exhibits antibacterial activity against 

gram-positive bacterial infections [81]. 

The most diverse phylum of Gram-negative bacteria is known 

as protozoa. The phyla of marine bacteria producing 

biologically active compounds with antibacterial, antiviral, 

antibiofilm, antifouling, and anticancer effects are frequently 

attributed to proteobacteria [82]. It has been discovered that the 

antibiotic compound thiomarinol is produced by 

Pseudoalteromonas species that have been isolated from 

marine invertebrates and seaweed [83]. Proteobacteria 

discovered by Dat et al. (2021) that produce macrolactin A 

and macrolactin H as the main bioactive chemicals and have 

potent antibacterial properties against a variety of pathogenic 

organisms [84]. 

Planctomycetes is a different phylum of bacteria that can be 

found in freshwater, soil, and marine settings. Although it 

occurs infrequently, it can live freely or attach to both biotic 

and abiotic surfaces [85]. They are capable of producing 

antimicrobial substances such polyketides, nonribosomal 

peptides, terpenoids, and bacteriocins, according to research 

using mass spectrometry. [86]. The generating strain, S. 

maiorica Mal15, and the co-occurring marine bacterial 

species' growth and biofilm could both be reduced by the 

tyrosine chemical stieleriacine, which was isolated from 

Stielera maiorica Mall5 [87]. 

 

Conclusion 

The increasing population is a global concern resulting in 

supply of health product and subject to healthy life. Marine 

resources will become one of the solution of this issue. 

Marine algae, microbes are the rich source of these 

metabolites which can easily make available the health 

supplements to the community. Phenolic compounds, 

flavonoids and carbohydrate play major role as such health 

supplements. The extraction techniques and their purification 

still needs some attention for their biorefineries. These 

bioactive materials can also be useful in food packaging and 

other antimicrobial applications.  
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