www.ThePharmaJournal.com

# The Pharma Innovation



ISSN (E): 2277-7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 TPI 2023; 12(9): 757-760 © 2023 TPI

www.thepharmajournal.com Received: 09-06-2023 Accepted: 13-07-2023

#### Trishank Verma

Pt KLS College of Horticulture & Research Station, Rajnandgaon, Chhattisgarh, India

Bhagwat Saran Asati RABL College of Agriculture & Research Station, Chhuikhadan, Chhattisgarh, India

#### Jitendra Singh

Mahatma Gandhi University of Horticulture & Forestry Camp Office, Raipur, Chhattisgarh, India

#### Nitin Kumar Rastogi

College of Agriculture & Research Station, Kanker, Chhattisgarh, India

#### Dikeshwar Nishad

SKS College of Agriculture & Research Station, Rajnandgaon, Chhattisgarh, India

Corresponding Author: Bhagwat Saran Asati RABL College of Agriculture & Research Station, Chhuikhadan, Chhattisgarh, India

## Effect of planting geometry on the growth and foliage yield of drumstick (*Moringa oleifera* L.)

### Trishank Verma, Bhagwat Saran Asati, Jitendra Singh, Nitin Kumar Rastogi and Dikeshwar Nishad

#### Abstract

The present investigation was conducted in Randomized Block Design with 03 replications in 09 treatments ( $2.5m \times 1.0 m$ ,  $2.5m \times 2.5m$ ,  $1.5m \times 1.0m$ ,  $1.0m \times 1.0m$ ,  $2.5m \times 2.0m$ ,  $1.3m \times 1.0m$ ,  $3.0m \times 2.5m$ ,  $3.0m \times 3.0m$ ,  $1.2m \times 1.2m$ ) and result concluded that the growth and yield parameter was found significantly superior in treatment T<sub>6</sub> ( $1.3m \times 1.0m$ ) for most of the characters i.e. stem girth (5.70 cm), number of branches/plant (16.27), number of leaflets/rachis (62.32), length of rachilla/plant (16.57 cm), leaflet length (24.10 cm), petiole length (12.54 cm), leaflet-petiole ratio (2.03), canopy spread (171.00 cm), fresh leaf weight (327.80 gm), dry leaf weight (73.55 gm), fresh leaf yield (2521.54 Kg/ha), dry matter percentage (22.43) and B: C ratio fresh leaves (3.04) and dry leaves (7.29).

Keywords: Planting geometry, foliage yield, Moringa and drumstick

#### Introduction

The drumstick (*Moringa oleifera* L) is one of the important perennial vegetables grown in India. It is popular because of its unique flavor and attractive taste. Moringa is also known as a '4F Plant' (Food, Fodder, Fuel & Fertility). Spacing is an important factor used to optimize tree growth, development and leaf yield per unit area of land, the trees should be established at the spacing that will produce maximum economic yields of crops. Many farmers are cultivate drumsticks for leafy purposes, but they are not aware of the optimum spacing. Planting at high density would increase the competition for nutrient space and light, which reduced the number of leaves per plant and the number of plants per unit area. Proper spacing is essential to get the maximum yield of Moringa leaves and better quality.

#### **Materials and Methods**

The experiment was conducted during Rabi, 2021-22 at the Instructional Farm, RABL College of Agriculture and Research Station Chhuikhadan, Dist- Khairagarh-Chhuikhadan-Gandai, Chhattisgarh, India. The experiment was laid out in Randomized Block Design with 3 replications and 9 treatments (spacing 2.5 m x 1.0 m, 2.5 m x 2.5 m, 1.5 m x 1.0 m, 1.0 m x 1.0 m, 2.5 m x 2.0 m, 1.3 m x 1.0 m, 3.0 m x 2.5 m, 3.0 m x 3.0 m, 1.2 m x 1.2 m). Drumstick (var. PKM-1) was used under present investigation. The nursery poly bag (pot mixture) filled with 1:2:1 sand: vermicompost: soil at 12x12 inches. After 30 days the plant was transplanted in the experimental field according to different spacing. The Recommended cultural packages of practice were adopted for well crop growth. The average values of each character were calculated based on randomly selected five plants in each replication and each treatment. The collected data on different parameters will be statistically analyzed by adopting the procedures suggested by Panse and Sukhatme (1995) <sup>[11]</sup>.

#### **Results and Discussion**

Data Table 1 shows that the plant height ranged from 117.2 to 144.5 cm and the overall mean was 126.16 cm at the final stage of harvesting (270 days after planting). The maximum plant height 144.5 cm was recorded in T9 (1.2 m x1.2 m) (Control), whereas the minimum plant height (117.2 cm) was observed in T1 (2.5 m x 1.0 m). Saint Sauveur (1992) <sup>[7]</sup> reported that the medium and wider spacing resulted in the greatest plant height growth, while the narrow spacing recorded the lowest plant height. Data recorded at the 270 days after planting, showed that the maximum stem base diameter (9.15) was measured in T<sub>6</sub> (1.3 m x 1.0 m), while the

#### The Pharma Innovation Journal

minimum stem base diameter (4.83) was found in  $T_1$  (2.5 m x 1.0 m). Teixeira *et al.* (2010) <sup>[10]</sup> also observed by the increase in the stem base diameter was due to its continual growth during the experimental period, as the plants were cut at one meter above the ground.

Table 1 exhibited that the maximum stem girth (5.70 cm) was recorded in T6 (1.3 m x 1.0 and the minimum stem girth (2.88 m m)

cm) was noted in T5 (2.5 m x 2.0 m) at 270 days after planting. On other hand, the maximum number of branches per plant (16.27) was measured in T<sub>6</sub> (1.3 m x 1.0 m). Adegun and Ayodele (2015)<sup>[2]</sup> finding the total yield increased as the cutting interval was prolonged because trees release more buds after harvesting, stimulate fast regrowth and develop high leafy retention and coppicing capacity after cutting.

| Table 1: Effect of different planting geometry on | various growth parameters in drumstick at 270 DAP. |
|---------------------------------------------------|----------------------------------------------------|
|---------------------------------------------------|----------------------------------------------------|

| Tr. No.        | Treatment Details<br>(R X P) | Plant height (cm) | Stem base diameter (cm) | Stem girth (cm) | Number of branches per plant |
|----------------|------------------------------|-------------------|-------------------------|-----------------|------------------------------|
| T1             | 2.5m x 1.0 m                 | 117.20            | 4.83                    | 2.99            | 10.27                        |
| T <sub>2</sub> | 2.5 m x 2.5 m                | 121.93            | 5.50                    | 3.59            | 10.80                        |
| T3             | 1.5 m x1.0 m                 | 124.93            | 6.23                    | 4.13            | 13.93                        |
| T4             | 1.0 m x 1.0 m                | 126.60            | 7.06                    | 5.67            | 14.47                        |
| T5             | 2.5 m x 2.0 m                | 124.20            | 4.87                    | 2.88            | 11.67                        |
| T <sub>6</sub> | 1.3 m x 1.0 m                | 128.87            | 9.15                    | 5.70            | 16.27                        |
| T <sub>7</sub> | 3.0 m x 2.5 m                | 122.67            | 5.58                    | 3.60            | 12.10                        |
| T <sub>8</sub> | 3.0 m x 3.0 m                | 124.53            | 5.48                    | 3.05            | 13.00                        |
| T9             | 1.2 m x 1.2 m (Check)        | 144.53            | 6.34                    | 4.54            | 13.67                        |
|                | SEm (±)                      | 2.215             | 0.14                    | 0.175           | 0.277                        |
|                | CD (5 %)                     | 6.699             | 0.425                   | 0.23            | 0.838                        |
|                | CV (%)                       | 3.04              | 3.976                   | 7.553           | 3.717                        |

It was revealed from data recorded at 270 days after planting (Table 2), showed that the highest number of leaflets per rachis 62.32 cm and maximum length of rachilla per plant 16.57 cm was recorded in T<sub>6</sub> (1.3 m x 1.0 m). The highest canopy spread per plant 171.0 cm was also calculated in T<sub>6</sub> (1.3 m x 1.0 m). Santosa *et al.* (2021) <sup>[8]</sup> observed the plants grown with larger spacing displayed higher lateral growth, producing denser canopies, due to the lower competition among the plants. Another finding is the appropriate cutting

management stimulated shoot growth and canopy size in the Guava plant Sutarno and Rosyida (2020)<sup>[9]</sup>. Data recorded at 270 days after planting (Table 2), showed that the highest leaflet length per plant (24.10) was measured in T<sub>6</sub> (1.3 m x 1.0 m), while the highest petiole length per plant 12.54 cm was observed in T<sub>4</sub> (1.0 m x 1.0 m). The highest leaflet-petiole ratio 2.03 was found in T<sub>6</sub> (1.3 m x 1.0 m), which was found statistical similar T<sub>3</sub> (1.5 m x 1.0 m) 1.99, T<sub>9</sub> (1.2 m x 1.2 m) 1.91 under the study (Table 2).

| Tr. No.        | Treatment Details<br>(R X P) | Number of<br>leaflets per<br>rachis | Length of<br>rachilla per<br>plant (cm) | Canopy<br>spread per<br>plant (cm) | Leaflet<br>length (cm) | Petiole<br>length (cm) | Leaflet-<br>petiole ratio |
|----------------|------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|------------------------|------------------------|---------------------------|
| T1             | 2.5m x 1.0 m                 | 26.15                               | 10.53                                   | 124.86                             | 14.38                  | 9.26                   | 1.55                      |
| T <sub>2</sub> | 2.5 m x 2.5 m                | 26.17                               | 10.68                                   | 123.83                             | 17.36                  | 11.53                  | 1.52                      |
| T3             | 1.5 m x1.0 m                 | 48.16                               | 13.45                                   | 147.10                             | 20.86                  | 10.46                  | 1.99                      |
| T4             | 1.0 m x 1.0 m                | 59.97                               | 15.53                                   | 150.38                             | 21.71                  | 12.54                  | 1.73                      |
| T5             | 2.5 m x 2.0 m                | 39.85                               | 11.35                                   | 135.93                             | 20.19                  | 11.77                  | 1.72                      |
| T <sub>6</sub> | 1.3 m x 1.0 m                | 62.32                               | 16.57                                   | 171.00                             | 24.10                  | 11.91                  | 2.03                      |
| T <sub>7</sub> | 3.0 m x 2.5 m                | 41.15                               | 11.67                                   | 137.25                             | 20.85                  | 11.40                  | 1.83                      |
| T8             | 3.0 m x 3.0 m                | 48.07                               | 12.17                                   | 143.83                             | 19.79                  | 10.96                  | 1.80                      |
| T9             | 1.2 m x 1.2 m (Check)        | 54.90                               | 12.77                                   | 141.67                             | 21.05                  | 11.03                  | 1.91                      |
|                | SEm (±)                      | 1.254                               | 0.359                                   | 3.854                              | 1.01                   | 0.645                  | 0.063                     |
|                | CD (5 %)                     | 3.792                               | 1.085                                   | 11.655                             | 3.054                  | N/A                    | 0.19                      |
|                | CV (%)                       | 4.807                               | 4.876                                   | 4.709                              | 8.733                  | 9.975                  | 6.086                     |

The higher fresh leaf weight 327.8 gm/plant was measured in  $T_6$  (1.3 m x 1.0 m), which was found dominant among all the treatments under study (Table 3). Mabapa *et al.* (2017)<sup>[6]</sup> in their research reported an increase in biomass accumulation due to higher planting density effect on the leaf yield. The highest dry leaf weight (gm/plant) (73.55) was measured in  $T_6$  (1.3 m x 1.0 m), which was found superior among all the treatments at 270 days after planting. A similar study conducted by Adegun and Ayodele (2015)<sup>[2]</sup> showed that the dense population of Moringa produced the highest Moringa dry leaf biomass yield compared to the spacious spacing. Data recorded at the final stage 270 days after planting, showed that the highest fresh leaf yield (2521.45 kg per

hectare) and the maximum dry leaf yield (62.32 kg per hectare) were measured in T<sub>6</sub> (1.3 m x 1.0 m) and the lowest fresh leaf yield (229.0 kg per hectare) and minimum dry leaf yield (26.15 kg per hectare) were found in T<sub>2</sub> (2.5 m x 1.0 m) (Table 3).The cutting was prolonged because trees release more buds after harvesting, stimulate fast regrowth, and develop high leafy retention and coppicing capacity after cutting during the dry season as agreed by Lazer (1981) <sup>[5]</sup>. Abdullahi and Maishanu (2021) <sup>[1]</sup>. Table 3 also exhibited that the highest dry matter percentage (%) (22.43) was noted in T<sub>6</sub> (1.3 m x 1.0 m). Goss (2012) <sup>[4]</sup> have also reported an increase in plant dry matter accumulation with an increase in planting density.

| Tr.<br>No.            | Treatment Details<br>(R X P) | Fresh leaf weight<br>(gm/plant) | Dry leaf weight per<br>plant (gm) | Fresh leaf yield<br>(Kg/ha) | Dry Leaf yield<br>(Kg/ha) | Dry matter<br>percentage |
|-----------------------|------------------------------|---------------------------------|-----------------------------------|-----------------------------|---------------------------|--------------------------|
| T1                    | 2.5m x 1.0 m                 | 152.00                          | 30.65                             | 608.00                      | 122.59                    | 20.15                    |
| T <sub>2</sub>        | 2.5 m x 2.5 m                | 149.00                          | 29.78                             | 238.40                      | 47.65                     | 19.97                    |
| T3                    | 1.5 m x1.0 m                 | 236.36                          | 52.87                             | 1575.75                     | 352.47                    | 22.37                    |
| T <sub>4</sub>        | 1.0 m x 1.0 m                | 245.23                          | 53.05                             | 2452.33                     | 530.47                    | 21.63                    |
| T5                    | 2.5 m x 2.0 m                | 167.60                          | 31.83                             | 335.20                      | 63.67                     | 19.00                    |
| T <sub>6</sub>        | 1.3 m x 1.0 m                | 327.80                          | 73.55                             | 2521.54                     | 565.74                    | 22.43                    |
| <b>T</b> <sub>7</sub> | 3.0 m x 2.5 m                | 188.33                          | 37.47                             | 251.11                      | 49.96                     | 19.90                    |
| T <sub>8</sub>        | 3.0 m x 3.0 m                | 206.10                          | 43.82                             | 229.00                      | 48.69                     | 21.27                    |
| T9                    | 1.2 m x 1.2 m (Check)        | 219.37                          | 45.18                             | 1523.38                     | 313.75                    | 20.60                    |
|                       | SEm (±)                      | 4.644                           | 1.463                             | 32.883                      | 9.546                     | 0.459                    |
|                       | CD (5 %)                     | 14.042                          | 4.424                             | 99.433                      | 28.865                    | 1.387                    |
|                       | CV (%)                       | 3.826                           | 5.727                             | 5.266                       | 7.103                     | 3.818                    |

Table 3: Effect of different planting geometry on various yield parameters in drumstick at 270 DAP.

Selling price =  $500 \text{ Rs Kg}^{-1}$ 

Economics is the most important aspect of any research upon which the recommendation depends and tests the feasibility of the technology. Until and unless a farmer is well convinced about a purposeful gain from a particular package of practices, he would not be willing to adopt the same. The cost of cultivation for fresh leaves is presented in Table 4 and data revealed that the minimum cost of cultivation (Rs 25098 ha<sup>-1</sup>) was calculated for  $T_2$  (2.5 m x 2.5 m) and maximum cost of cultivation (Rs 82584ha<sup>-1</sup>) was observed for  $T_4$  (1.0 m x 1.0 m) under study. The highest net returns of cultivation (Rs 230116 ha<sup>-1</sup>) and highest B:C Ratio (3.48) were calculated for treatment  $T_6$  (1.3 m x1.0 m) while, the lowest net return (Rs2870 ha<sup>-1</sup>) and lowest B:C Ratio (0.11) was observed for  $T_8$  (3.0 m x 3.0 m) for fresh leaves.

Table 4: Performance of planting geometry on benefit-cost ratio for fresh leaves.

| r. No.                | Treatment Details (R X P) | Cost of cultivation | Gross Return | Net Return | Benefit Cost Ratio |
|-----------------------|---------------------------|---------------------|--------------|------------|--------------------|
| T1                    | 2.5m x 1.0 m              | 49443               | 78333        | 28890      | 0.58               |
| T <sub>2</sub>        | 2.5 m x 2.5 m             | 25098               | 29341        | 4243       | 0.17               |
| T3                    | 1.5 m x1.0 m              | 62646               | 197943       | 135297     | 2.16               |
| T4                    | 1.0 m x 1.0 m             | 82584               | 301848       | 219264     | 2.66               |
| T5                    | 2.5 m x 2.0 m             | 27768               | 44243        | 16475      | 0.59               |
| T <sub>6</sub>        | 1.3 m x 1.0 m             | 75711               | 305827       | 230116     | 3.48               |
| <b>T</b> <sub>7</sub> | 3.0 m x 2.5 m             | 27322               | 31864        | 4542       | 0.17               |
| T <sub>8</sub>        | 3.0 m x 3.0 m             | 26132               | 29002        | 2870       | 0.11               |
| <b>T</b> 9            | 1.2 m x 1.2 m (Check)     | 69504               | 194381       | 124877     | 1.80               |
| T9                    |                           |                     |              |            |                    |

Selling price =  $50 \text{ Rs Kg}^{-1}$ 

The cost of cultivation data for dry leaves is presented in Table 5, data revealed that minimum cost of cultivation (Rs 26348 ha<sup>-1</sup>) was calculated for T<sub>2</sub> (2.5 m x 2.5 m) and the maximum cost of cultivation (Rs 89334 ha<sup>-1</sup>) was noted for T<sub>4</sub> (1.0 m x 1.0 m) under study, whereas the highest net returns of cultivation (Rs 525552 ha<sup>-1</sup>) were calculated for treatment

 $T_6$  (1.3 m x 1.0 m) and the lowest net return (Rs 31929 ha-1) was fond for  $T_2$  (2.5 m x 2.5 m). Table 5 revealed that the highest B: C Ratio (6.96) was also obtained in treatment  $T_6$  (1.3 m x 1.0 m), whereas lowest B: C Ratio 1.18 was obtained in  $T_7$  (3.0 m x 2.5 m) for dry leaves.

Table 5: Performance of planting geometry on benefit-cost ratio for dry leaves.

| Tr. No.               | <b>Treatment details</b> | Total cost | Gross return | Net return | <b>Benefit Cost Ratio</b> |
|-----------------------|--------------------------|------------|--------------|------------|---------------------------|
| T1                    | 2.5 x 1.0 m              | 52818      | 157600       | 104782     | 1.98                      |
| T <sub>2</sub>        | 2.5 x 2.5 m              | 26348      | 58277        | 31929      | 1.21                      |
| T3                    | 1.5 x 1.0 m              | 67146      | 445033       | 377887     | 4.62                      |
| <b>T</b> 4            | 1.0 x 1.0 m              | 89334      | 650333       | 471665     | 5.27                      |
| T5                    | 2.5 x 2.0 m              | 29018      | 83957        | 54939      | 1.89                      |
| T <sub>6</sub>        | 1.3 X1.0 m               | 77411      | 683423       | 525552     | 6.96                      |
| <b>T</b> <sub>7</sub> | 3.0 X 2.5 m              | 28572      | 62363        | 33791      | 1.18                      |
| T <sub>8</sub>        | 3.0 X 3.0 m              | 27382      | 61717        | 34335      | 1.25                      |
| <b>T</b> 9            | 1.2 X 1.2 m (check)      | 74004      | 398462       | 324458     | 4.38                      |

#### Conclusion

The growth and yield parameter on different planting geometry was obtained significantly superior in treatment T6  $(1.3 \times 1.0 \text{ m})$  for most of the parameters i.e. stem girth (5.70 cm), number of branches/plant (16.27), number of leaflets/rachis (62.32), length of rachilla/plant (16.57 cm), leaflet length (24.10 cm), petiole length (12.54 cm), leaflet

petiole ratio (2.03), canopy spread (171.00 cm), fresh leaf weight (327.80 gm), dry leaf weight (73.55 gm), fresh leaf yield (2.03 t/ha), dry leaf yield (565.74 kg/ha), dry matter percentage (22.43) and B:C ratio fresh leaves (3.04) and dry leaves (7.29).

#### Acknowledgment

The authors are expresses his heartfelt gratitude to Dr. Avinash Kumar Gupta, Dean, RABL College of Agriculture & Research Station, Chhuikhadan, Chhattisgarh, India and Dr. M. S. Paikra, Dean, Pt KLS College of Horticulture & Research Station, Rajnandgaon, Chhattisgarh, India for giving me help and guidance during the successful conduction of the experiment.

#### References

- 1. Abdullahi S, Maishanu HM. Effect of spacing on growth performance and nutrient quality of moringa (*Moringa stenopetala*) under the semi-arid conditions of Nigeria. International Journal of Research and Scientific Innovation. 2021;8(5):2321-2705.
- 2. Adegun MK, Ayodele OJ. Growth and yield of *Moringa oleifera* L. as influenced by spacing and organic manures in South-Western Nigeria. International Journal of Agronomy and Agricultural Research. 2015;6(6):30-37.
- 3. Ahammed U, Rahman MM, Mian MAK. Multivariate analysis in stem amaranth (*Amaranthus tricolor*). Bangladesh Journal Plant Breeding and Genetics. 2013;26(1):11-17.
- 4. Goss M. A study of the initial establishment of multi purpose moringa (*Moringa oleifera* L.) at various plant densities, their effect on biomass accumulation and leaf yield when grown as vegetable. African Journal of Plant Science. 2012;6(3):125-129.
- Lazer JR. Effect of cutting height and frequency on dry matter production of *Codariocalix gyroides* (syn. *Desmodium gyroides*) in Belize, Central America. Trop. Grassl. 1981;15:10-16.
- 6. Mabapa MP, Ayisi KK, Mariga IK. Effect of planting density and harvest interval on the leaf yield and quality of Moringa (*Moringa oleifera* L.) under diverse agroecological conditions of Northern South Africa. International Journal of Agronomy. 2017;9:2941432.
- 7. Saint Sauveur A. Le Moringa au Niger, ouquand les agriculteursplantent des arbres, Mars, PROPAGE /Ministère de la cooperation; c1992.
- 8. Santosa RS, Netoa EJV, Bonfima BRS, Difanteb GS, Bezerraa JDV, Listab FN, *et al.* Growth and biomass production of moringa cultivated in semiarid region as responses to row spacing and cuts. Tropical Animal Science Journal. 2021;44(2):183-187.
- Sutarno, Rosyida. The growth and yield of *Moringa* oleifera L. as affected by plant spacing and cutting interval. Earth and Environmental Science. 2020;518:012044.
- Teixeira VI, Dubeux Junior JCB, Santos MVF, Lira Junior MA, Lira MA, Silva HMS. Agronomic and bromatologic aspects of forage legumes from Brazilian NE. Arch. Zootec. 2010;59:245-254.
- 11. Panse VG, Sukhatme PV. Statistical Methods for Agricultural Workers. ICAR, New Delhi; c1995.