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Abstract

The availability of genetic diversity for particular traits in populations is important for both development 

of crop improvement programmes and implementation of suitable selection methods. The current study is 

aimed at exploring the genetic variability present among 339 rice genotypes during kharif-2022 using 

augmented design. With the exception of chaffy grains/panicle, biomass yield/plant and seed yield/plant 

all the characters under study showed a minimal impact of the environment on the expression of the 

character with small differences between the GCV and PCV. High heritability and genetic advance were 

observed for all the characters except biomass yield/plant, chaffy grains/panicle and spikelet fertility 

suggesting presence of high variability among the genotypes and additive gene action. In PCA, the first 

six principal components (PC1 to PC6) with eigenvalues larger than 1 were found to account for 

80.767% of the variation in all attributes analysed. Traits such as; flag leaf area, biomass yield/plant, total 

grains/panicle, filled grains/panicle, seed yield/plant, panicles/plant, and total tillers/plant were 

discovered to be important characters contributing to variability through the use of variable biplot 

analysis. Therefore, by using direct phenotypic selection, these traits can be improved and used in 

selection programmes. 

Keywords: Variability, principal component analysis, rice, yield attributing traits 

1. Introduction

Rice is the most versatile staple food for one-third of the world's population, and Asia 

produces approximately 90% of the world's rice (Hasan-Ud-Daula and Sarker). In the Asian 

diet, rice continues to be the main source of protein, fibre, and nutrients. It is essential to 

exploit genotypic diversity to increase rice production capacity. Any crop improvement 

programme must prioritise genetic richness in the germplasm since it is essential for 

integrating advantageous alleles and bringing about desired changes (Sharma et al., 2021) [20]. 

It is crucial to understand the genetic variability of the species, the nature of trait relationships, 

and the role of different traits in improving yield through breeding (Ketema and Geleta, 2022) 
[11]. 

Yield is a complex character that is affected by the way that genes are organised, the 

environment in which it grows, and the degree and kind of genotypic variety. It is influenced 

directly or indirectly by other agronomic factors such as primary and secondary 

branches/panicle, panicle length, tillers/plant and filled grains/panicle (Beena et al., 2021) [3]. 

In any crop improvement programme the first and foremost step is the evaluation and 

characterization of available germplasm for genetic variability and identification of diverse 

and productive genotypes from that accession. Understanding genetic variability can determine 

whether certain variances are heritable or not. The degree of heritable variation is significant 

since it helps to choose parents during crop improvement programme (Dutta et al., 2013) [5]. 

However, heredity (Broad sense) may not be useful for selection based on phenotype because 

it is modified by the environment. In order to accurately forecast the genetic gain subject to 

selection, estimates of heritability combined with genetic advance are more accurate than 

estimates of heritability alone (Ogunbayo et al., 2014) [18]. 

It is a common practice to diversify the parents to take advantage of the phenotypic diversity 

present in the germplasm to break through the yield plateau. It is usual practice to diversify the 

parents in order to take advantage of the variation present in germplasms and break through 

the yield plateau, which is frequently a sign of a reserved genetic foundation. Since variation 

in plants for yield and yield-related factors happens often, principal component analysis (PCA)  
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can be used to find patterns and reduce redundant in datasets. 

The primary advantage of PCA is that it allows you to 

measure the value of each dimension with respect to 

the variability of a dataset. In consideration of these facts, the 

current study was done to assess genetic variation and the 

level of variability present among genotypes of the 3k rice 

panel for yield and its attributing traits using heritability, 

genetic advance and PCA. 

 

2. Materials and methods 

The genotypes used in the present investigation comprised 

339 lines (334 entries and 5 checks) of 3k-MCP (Mini Core 

Panel) of rice received from IRRI-SA Hub, ICRISAT 

Campus, Hyderabad, India. The experiment was carried out in 

Kharif 2022 on the experimental field of ICAR-NRRI 

(National Rice Research Institute), Cuttack, using an 

augmented randomized block design in three blocks with five 

checks (Anjali, Vandana, IR64, MTU1010, Swarna, 

BPT5204). The checks were replicated three times. Three 

random plants per replication were selected to take the 

observations on plant height (PH) in cm, panicle length (PL) 

in cm, panicles per plant (PPP) in numbers, flag leaf length 

(FLL) in cm, flag leaf width (FLW) in cm, flag leaf area 

(FLA) in cm2, total tillers per plant (TTP) in numbers, filled 

grains per panicle (FGP) in numbers, chaffy grains per panicle 

(CGP) in numbers, total grains per panicle (TGP) in numbers, 

spikelet fertility (SF) in %, biological yield per plant (BYP) in 

g, seed yield per plant (SYP) in g, harvest index (HI) in% and 

hundred seed weight (HSW) in g. Further, the number of days 

to 50% flowering was also recorded. Estimation of 

phenotypic and genotypic coefficients of variation, 

heritability, genetic advance and principal component analysis 

(PCA) was done using R studio software (version 4.2.2). 

 

3. Results and Discussion 

3.1 Genotypic and phenotypic coefficient of variation 

The genetic variability present in a population is utilised by 

crop improvement programmes. Genetic variation within the 

population and/or between the genotypes under selection 

determines how effectively a crop will respond to selection. In 

the current study, the genotypic coefficient of variation 

(GCV) ranged from 9.97% for spikelet fertility to 38.19% for 

seed yield per plant, while the phenotypic coefficient of 

variation (PCV) ranged from 12.18% in spikelet fertility to 

55.04% for chaffy grains/panicle (Table-1). Sivasubramanian 

and Menon (1973) [22] defined PCV and GCV values as high 

if they are greater than 20%, low if they are less than 10%, 

and moderate if they are between 10% and 20%. Both GCV 

and PCV were high for panicles/plant, flag leaf area, filled 

grains/panicle, chaffy grains/panicle, total grains/panicle, 

biomass yield/plant, seed yield/plant, harvest index and 

hundred seed weight. High values of PCV and GCV indicate 

the existence of substantial variability for any character and 

selection might be effective based on the same character. 

Similar results of high GCV and PCV have been reported by 

Abebe et al. (2017) [1] for grain yield and unfilled 

grains/panicle, Ajmera et al. (2017) [2], Behera et al. (2018) [4] 

and Nath and Kole (2021) [17] for seed yield/plant. In the 

current study, PCV was higher than GCV for all the traits 

under observation and it was earlier observed by Tuhina-

Khatun et al. (2015) [23], Longjam and Singh (2019) [26] and 

Patel et al. (2021) [19] in rice. In any trait, the magnitude of the 

differences between GCV and PCV indicates how much the 

environment has influenced that trait; large differences 

indicate a great deal of environmental influence, whereas 

small differences indicate a lot of genetic influence. Because 

of the minor variations between the PCV and GCV for all 

traits except chaffy grains/panicle, biomass yield/plant, and 

seed yield/plant, the study discovered less environmental 

influence on the phenotypic expression of all of these traits. It 

also means that selecting individuals based on these traits for 

prospective crossover programmes will be successful 

(Tuhina-Khatun et al., 2015) [23]. 

 
Table 1: Genetic parameters for yield and attributing traits of 339 

genotypes of 3k rice panel 
 

Trait GCV PCV Hbs GA GAM 

DFF 13.32 13.58 96.22 26.55 26.96 

PH 17.93 18.07 98.47 43.07 36.71 

PL 12.13 12.62 92.33 5.37 24.05 

PPP 29.06 33.38 75.83 4.73 52.21 

FLL 16.84 18.31 84.64 9.40 31.96 

FLW 13.50 17.19 61.66 0.30 21.87 

FLA 24.05 28.77 69.86 11.81 41.47 

TTP 27.78 33.17 70.12 4.96 47.99 

FGP 32.84 36.35 81.60 49.63 61.20 

CGP 37.06 55.04 45.33 10.18 51.47 

TGP 28.70 32.63 77.35 52.53 52.07 

SF 9.97 12.18 66.93 13.47 16.82 

BYP 29.77 44.97 43.82 30.83 40.65 

SPY 38.19 49.02 60.72 10.57 61.40 

HI 33.41 38.96 73.56 14.23 59.12 

HSW 20.34 22.18 84.12 0.89 38.49 

(GCV: Genotypic coefficient of variation; PCV: Phenotypic 

coefficient of variation; Hbs: Heritability (broad sense) in %; GA: 

Genetic advance; GAM; Genetic advance as % of mean) 

 

3.2 Heritability and genetic advance 

A character could be enhanced through selection more easily 

if there was a substantial heritable component. It is possible to 

determine the relative contributions of genetic and non-

genetic variables to the overall variance of phenotypic traits 

within a population by conducting a heritability analysis. 

Selection for such a trait may be easier due to a large additive 

effect since any quantitative trait with a very high heritability 

estimate suggests that environmental effects contribute to 

phenotypes in a relatively small proportion (Vaghela et al., 

2009) [24]. Estimated values of heritability in the broad sense 

(Hbs) for various features ranged from 43.82% for biomass 

yield/plant to 98.47% for plant height. A trait's heritability can 

be classified as high (> 60%), moderate (31-60%), or low (0-

30%), according to Johnson et al. (1955) [8]. Except for chaffy 

grains/panicle and biomass yield/plant, all of the evaluated 

traits had high heritability estimates. Similar findings are seen 

in the works of Longjam and Singh (2019) [26] for days to 

50% flowering, plant height, length of leaf, spikelet fertility 

and test weight and Patel et al. (2021) [19] for plant height, 

effective tillers, spikelet fertility and seed yield/plant. 

Heritability has an impact on genetic gain under selection. 

Genetic advance (GA) under selection, is the enhancement of 

characteristics genotypic values for the new population as 

compared to the base population during a single cycle of 

selection at a specific level of selection intensity (Wolie et al., 

2013) [25]. In this study, spikelet fertility had the lowest 

genetic advance as % of mean (GAM) of 16.82%, whereas 

seed yield per plant had the highest GAM of 61.40%. Johnson 

et al. (1955) [8] defined GAM values as high when they are 
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greater than 20%, low when they are less than 10%, and 

moderate when they are between 10% and 20%. In the current 

study, high GAM values were expressed by all the traits under 

observations except spikelet fertility. In the works of Abebe et 

al. (2017) [1] for unfilled grains/panicle and grain yield/plant 

and Longjam and Singh (2019) [26] for total tillers/plant, and 

grain yield/plant, high GA were reported. 

To increase selection effectiveness, it is necessary to combine 

heritability with genetic advance (Johnson et al., 1955) [8]. 

Heritability and genetic advance (as % of mean) provide an 

indication of the level of improvement that can be achieved 

by phenotypic selection (Lalitha et al., 2019) [14]. High 

heritability and high GAM indicate that additive gene action 

predominates in the expression of traits like seed yield per 

plant, harvest index, hundred seed weight, total tillers/ plant, 

panicle length, plant height, panicle numbers/plant, flag leaf 

length, flag leaf width, flag leaf area, filled grains/panicle, 

total grains/panicle, and days to 50% flowering. As a result, 

these characters are reliable and can be practiced for further 

improvement by selection. 

 

3.3 Principal Component Analysis 

Principal component analysis (PCA) was used to calculate the 

effective contribution of various traits based on the 

corresponding variance in order to comprehend variable 

independence and balanced loading of traits. Table 2 provide 

the eigenvalues, percent variability, and cumulative percent 

variability of various characters. As a potential source of 

diversity, principal components (PCs) with eigenvalues 

greater than 1 should be considered (Kaiser, 1960) for study. 

The first six principal components (PC1 to PC6) in the current 

investigation, with eigenvalues of 4.443, 3.011, 1.749, 1.524, 

1.146, and 1.05, respectively, explained 80.767% of the total 

variance for all the analysed features. In Table 3, it is shown 

what percentage of the variables contributed to the principal 

component axis.  

Traits viz. flag leaf area, filled grains/panicle, total 

grains/panicle and biomass yield/plant all contributed more 

favorably to the PC1, which explained 27.767% of the overall 

variation. A further 18.822% of the overall variation was 

accounted for by the PC2, which was mostly influenced by 

panicles/plant, total tillers/plant, chaffy grains/panicle, 

spikelet fertility, and seed yield/plant. Likewise, PC3 showed 

significant loadings for panicles/plant, tillers/plant, chaffy 

grains/panicle, and spikelet fertility. PC3 described 10.929% 

of the total variation. The variability for the traits present 

across the genotypes was finally contributed by the fourth, 

fifth, and sixth principal components (PC4, PC5 and PC6) 

which contributed around 9.524, 7.162 and 6.563% of the 

variability, respectively. The PC4 explained the patterns of 

variation in panicle length, flag leaf length, filled 

grains/panicle, and total grains per panicle; while PC5 

provided variance through hundred seed weight, flag leaf 

length and area. The PC6 variability was mostly influenced by 

the days to 50% flowering, chaffy grains/panicle, harvest 

index and hundred seed weight. These traits account for a 

considerable portion of the divergence and also carry the 

majority of the variability. According to Singh et al. (2017) 
[21], characters would contribute more to the divergence the 

higher the absolute value in the PC. Six major components 

accounted for 76.4% of the genetic diversity assessed for 

micronutrient contents and agro-morphological characters of 

rice (Madhubabu et al., 2020). In Kumari et al. (2021) [16, 13], 

the first three PCs explained 68.69% of the total variation, and 

PC1 was positively loaded with panicles/plant. A PCA 

analysis of 217 germplasm lines revealed that PC1 and PC2 

accounted for 46.15% of variability and plant height, filled 

grains/panicle, single plant yield and test weight were 

significant variables influencing variability (Krishna et al., 

2022) [12]. 

 
Table 2: Eigen values and contribution of variability for the 

principal component axis 
 

PC Eigenvalue 
Percentage of 

variance 

Cumulative % of 

variance 

PC1 4.443 27.767 27.767 

PC2 3.011 18.822 46.588 

PC3 1.749 10.929 57.518 

PC4 1.524 9.524 67.042 

PC5 1.146 7.162 74.204 

PC6 1.050 6.563 80.767 

PC7 0.950 5.936 86.703 

PC8 0.592 3.700 90.403 

PC9 0.550 3.439 93.842 

PC10 0.452 2.827 96.669 

PC11 0.417 2.605 99.273 

PC12 0.046 0.284 99.558 

PC13 0.034 0.214 99.772 

PC14 0.028 0.178 99.95 

PC15 0.008 0.050 100 

 
Table 3: Percentage contribution of variables on principal 

component axis 
 

Variables PC1 PC2 PC3 PC4 PC5 PC6 

DFF 4.291 7.03 1.839 3.117 1.898 11.246 

PH 8.491 0.009 0.034 5.915 4.217 8.006 

PL 8.143 0.033 0.018 11.191 1.235 0.388 

PPP 0.42 19.375 16.815 0.081 2.358 0.074 

FLL 7.977 0.083 0.016 14.572 17.898 0.011 

FLW 7.657 4.675 2.89 0.326 2.662 3.727 

FLA 12.942 1.44 1.372 7.51 14.443 1.695 

TTP 0.185 19.344 16.755 0.174 3.281 0.001 

FGP 10.428 1.619 9.373 18.197 0 0.254 

CGP 3.431 10.236 11.118 7.956 0.543 11.786 

TGP 12.301 0.007 2.692 22.626 0.069 0.468 

SF 0.001 14.223 23.713 0.023 0.378 9.451 

BYP 12.746 1.565 5.131 0.108 5.627 1.873 

SYP 8.906 10.882 0.205 0.116 4.966 5.394 

HI 0.967 9.323 7.931 0.001 0.181 32.055 

HSW 1.115 0.159 0.098 8.087 40.245 13.571 

 

The coefficient of correlation between any two vectors 

representing variables in a biplot analysis is given by the 

cosine of the angle between the two vectors. Any angle 

between a vector representing a variable and an axis 

representing a PC is also an indication of correlation between 

two variables (Jolliffe and Cadima, 2016) [9]. Each trait's 

vector length shows how much it contributed to overall 

divergence; the longer the vector length, the greater the 

contributing traits were (Krishna et al., 2022) [12]. This study 

used PC1 and PC2 to perform variable biplot analysis for 16 

yield-related factors in order to examine how they interacted 

with one another (Fig. 1). Indicating its contribution to the 

overall divergence, the trait flag leaf area had the highest 

vector length, which was followed by biomass yield/plant, 

total grains/panicle, filled grains/panicle, seed yield/plant, 

panicles/plant, and total tillers/plant. The variable biplot 

https://www.thepharmajournal.com/


 
 

~ 1988 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 
shown in Fig. 1 clearly demonstrates the sign difference in 

loading values of variables with regard to PC1 and PC2. With 

the exception of harvest index, every one of the 16 

investigated variables had a positive connection with PC1. 

Likewise, for PC2, all traits except chaffy grains/panicle, days 

to 50% flowering, flag leaf width, flag leaf area, and hundred 

seed weight exhibited positive association. For several yield-

attributing features in rice, Fathima et al. (2021) [6] and 

Krishna et al. (2022) [12] revealed comparable findings. 

 

 
 

Fig 1: Biplot of 16 yield-related traits across the first two principal components 

 

4. Conclusion 

The current study highlighted the variability that existed 

across the 339 genotypes in the 3k rice panel including check 

varieties. The results of heritability and genetic advance 

demonstrated the predominance of additive gene action in the 

expression of panicle length, number of panicles per plant, 

flag leaf length, width, and area, number of tillers per plant, 

number of filled grains per panicle, number of total 

grains/panicle, and seed yield/plant, so selection based on 

these traits could contribute significantly to the improvement 

of rice. Using the principal component analysis method, the 

16 variables in the data set were efficiently reduced to 6 

principal components with eigenvalues greater than 1, 

accounting for 80.767% of the overall variability. It explains 

the pattern of useable variation in the current set of genotypes 

from the 3k rice panel. Principal components and variable 

biplot served as the foundation for identifying traits (such as 

flag leaf area, biomass yield/plant, total grains/ panicle, filled 

grains/panicle, seed yield/plant, panicles/plant, and total 

tillers/plant) influencing phenotypes and undertaking 

selection, which will be effective for yield improvement. 

Thus, future breeding programs will benefit from selecting 

traits with high variability. 
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