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Abstract 
Minimizing environmental consequences and enhancing crop yield are based on soil chemical, physical, 

and mineralogical properties. Traditional procedures, on the other hand, are time consuming and costly. 

Soil property mapping must be done quickly and accurately for agricultural, forestry, and environmental 

management. In addition to mapping and classifying soil, hyperspectral remote sensing can also be 

utilized for texture descriptions. The aim of this work is to extend and analysis an alternate approach for 

assessing soil parameters utilizing UV-Vis-NIR spectroscopy to existing soil analysis methods. Optical 

remote sensing analyzes variable electromagnetic radiation (spectral characteristics) reflected from 

various targets on the Earth's surface in the visible spectral area, namely near infrared, shortwave 

infrared, and thermal infrared (0.4 to 14 microns). The analysis and evaluation of reflected radiation 

detected by a large number of narrow, contiguous, and continuous spectral bands is the basis of hyper 

spectral remote sensing. It is also known as imaging spectroscopy. Imaging spectrometers' detailed 

spectrum characterization of surface absorption patterns allows robust inversion methods to be utilized to 

recover biological and geochemical information about the captured area. 
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Introduction 

Soil is a valuable natural resource that provides an irreplaceable and diversified environment 

for all eco-system (Breemen and Buurman et al. 2003 and Osman et al. 2014) [68, 75]. Soil 

quality management both globally and temporally is crucial for agro ecological sustainability 

(Hively et al. 2011 and Lagacherie et al. 2013) [27, 37]. However, one of the major challenges in 

environmental monitoring is the timely and accurate measurement of soil attribute. Traditional 

methods for analysis are accurate for identify and observe of soil attribute, but they require a 

more number of samples to detect spatial variability, which takes time and labor (Jaber et al. 

2011 and Ciampalini et al. 2015) [28, 14]. Furthermore, the applications of these techniques are 

limited to local or small areas, whereas scientists and researchers need estimates of soil quality 

at a larger scale (Psomas et al. 2011) [50]. As a result, novel techniques for monitoring soil 

parameters are required. 

Many contiguous narrow spectrum bands of electromagnetic radiation (EMR) in the visible, 

near-infrared, mid-infrared and thermal infrared regions are measured by hyperspectral 

sensors. Certain soil features have a specific absorption band that can be used to identify them, 

according to laboratory and field investigations. Soil water, for example, has lesser absorption 

bands at 970, 1200, and 1770 nanometer and more significant absorption bands at 1400 nm 

and 1900 nm. Similarly, gypsum and montmorillonite have absorption bands at 1800 and 2300 

nm, as well as between 520 and 1000 nm. Soil spectral signatures that may be measured 

quickly can aid in the development of algorithms for estimating soil parameters (Shepherd et 

al. 2002, Brown et al. 2006, Rossel et al. 2016, Katuwal et al. 2017) [60, 9, 71, 32]. These created 

methods can also be used by unmanned aircraft and remote sensor devices to rapidly generate 

a map of a soil's attributes. A rapid scan of geocoded soil samples were estimated using 

spectral based algorithms however; this may require a large library of soil spectra representing 

diverse soil types in India. 

 

Application of hyper spectral remote sensing in soil mineral identification 

Geological surveys based Traditional mineral mapping is labor intensive, expensive and 

ineffective. Traditional investigations entail substantial structural mapping, landform study, 

petrology, mineralogical and soil chemical analysis (Kusuma et al. 2012, Ramakrishnan et al.  
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2015) [36, 52-53]. RS, on the other hand, provides significantly 

more affordable method of quickly finding and collecting 

mineral information across entire geographical area. This is 

because spectral data obtained by remote sensing might be 

utilized to infer hydrothermally altered mineral or altered 

mineral area, which have been linked various kinds of 

mineralize systems (Carrino et al. 2018) [11]. 

155 bands were evaluated using hyper spectral data to 

identifying and mapping the key altered minerals by 

absorption bands between VNIR and SWIR areas. SAM and 

SFF methods are utilized to determine the mineral are 

presents. Five minerals, kaolinite-5, kaolinite-2, muscovite, 

hematite, and kaosmec, are identified and used to create a 

mineral map using the SAM classifier on a Hyperion data 

(Rani et al. 2015) [54]. Despite the low signal to noise ratio of 

the Hyperion image they are capable to detect dolomite and 

dolomite with chlorite from the data. Spectroscopic studies 

are appropriate for identifying minerals and rocks (Govil et al. 

2018) [23]. Significant discrepancies are noted for quartz-rich 

sediments, with SWIR overestimating their distribution and 

LWIR producing more consistent results when compared to 

current maps. Longwave infrared (LWIR) and shortwave 

infrared (SWIR) pictures were both influenced by widespread 

lichen coatings on mafic rocks (basalts and gabbros), with 

SWIR providing better findings than LWIR (Feng et al. 2018) 
[17]. Significant correlation between iron oxide concentration 

with near-infrared absorption feature depth and width across 

different empirical models, with root mean square error 

(RMSE) (Shaik et al. 2021) [58]. Mineral identification and 

mapping using airborne hyperspectral data employing 

methods such as spectral angle mapper (SAM), spectral 

feature fitting (SFF), and mixture tuned matched filtering 

(MTMF). The visible and near-infrared spectral reflectance of 

minerals is used to identify them. A total of 13 minerals were 

detected and a mineral map was created using various 

methods. The mineral map created by the MTMF method is 

more convenient and accurate than other algorithms (Jain et 

al. 2019) [29]. Vertical stripes are removed using a local split 

removal algorithm. Absolute area inversion was performed 

using the FLAASH module. Spectral information is reduced 

using minimal noise refraction techniques and applying quiet 

bands to the pixel purity index and the purest pixels on Earth's 

surfaces (Vigneshkumar et al. 2017) [70]. AVIRIS-NG 

hyperspectral data can and may be used to identify and 

determine hydrothermally changed, weathered, and clay 

minerals (Tripathi et al. 2017) [67]. A thorough examination of 

reflectance spectroscopy for identifying of minerals from rare 

earths in carbonatite samples from throughout the world 

(Neave et al. 2016) [44]. Short range hyperspectral image is 

helpful for detecting absorption features caused by base metal 

(Boesche et al. 2015) [8]. More advanced techniques of RS by 

implementing the resonant microwave cavity concept in 

hyperspectral SAR images. Beyond the mineral explorations, 

the authors used the hyperspectral imaging technique to 

corroborate its rapid capacity as an application in food safety. 

(Morrison et al. 2016) [30]. 

 

Application of hyperspectral remote sensing in soil 

nutrient prediction 

Soil nutrients are important for assessing soil fertility and play 

an important role in soil productivity, food safety, and to 

sustain agro-ecological (Nowak et al. 2015) [45]. Soil nutrient 

mapping that is timely and precise can be very beneficial in 

minimizing nutrients losses and thus enhancing fertilizer 

management. Hyperspectral remote sensing data has become 

an essential source of information for modeling soil nutrients 

due to its capacity to detect even the tiniest spectrum changes 

in soil nutrients (Song et al. 2018) [63]. 

Stepwise regression models based on spectral images formed 

from increased spectral variables produced good geographic 

distributions, indicating that this method has a high potential 

for predicting soil attributes. (Yu et al. 2017) [74]. The 

suggested machine learning method has the ability to 

efficiently determine soil nutrient spectral characteristic 

indices, improve the accuracy of results. LASSO and GBDT 

algorithms were used to increases the precision of soil total N, 

P and K estimation, which is important for managing 

agricultural land (Peng et al. 2021) [48]. A combination of 

SWIR, NIR, and visible region was found to be more useful 

for assessing plant nutrient levels (Mahajan et al. 2014) [40]. 

Computer vision hyperspectral remote sensing have been 

excellent assessment accuracy and efficient reflection for 

organic carbon, nitrogen, phosphorus and potassium content 

(Ma et al. 2022) [39]. Multiple linear regression (MLR), 

random forest regression (RFR), support vector machine for 

regression (SVR), and gradient boosting (GB) were used to 

analysed for N, P, K and organic carbon content using optical 

remote sensing data, terrain/climate data and real soil value. 

Suggest that GB and RFR performed superior than other 

sMAPE models (Kaur et al. 2020) [33]. Assessing soil nutrients 

the DWT-SVR (discrete wavelet transformation-support 

vector regression) method may be a good data mining 

strategy. (Sarathjith et al. 2016) [56]. The spectral region 993.2 

nm has a distinct characteristic. As a result, a model for 

estimating N, P and K fractional abundance in soil samples is 

developed (Patel et al. 2019) [47]. The RF model outperformed 

the SVR model in reproducing micronutrient heterogeneity as 

well as extreme values in the resulting maps (Keshavarzi et 

al. 2022) [34]. Apply neural network model for predicting 

status of soil nutrients using principal wavelet components 

(Gulhane et al. 2017) [25]. 

 

Application of hyperspectral remote sensing in soil 

organic carbon estimation 

SOC is an important source of plant nutrients, stimulates 

particle aggregation, improves soil structure, enhances water 

holding capacity, and gives habitation for soil microorganism. 

(Schoonover and Crim 2015) [57]. The impact of SOC on 

agricultural productivity has driven interest in digital soil 

mapping technologies (Chen et al. 2000, Frazier et al. 1989, 

Mishra et al. 2009 and Mulder et al. 2011) [13, 19, 42, 43]. 

Spectroscopy is utilized digital soil mapping systems since it 

have been shown to precisely and effectively relate spectral 

reflectance to soil characteristics (Bachofer et al. 2015, 

Gomez et al. 2008) [2, 22]. 

Soil organic carbon index (SOCI) had the potential to be used 

for forecast and map SOC using Worldview-2 satellite spectra 

data to the same range as the Rapid Carbon evaluation 

laboratory spectra (Thaler et al. 2018) [65]. The multiple 

regression equation among SOM content and spectral index 

was significant and the color index was greater significance in 

estimating soil organic carbon (Mandal et al. 2016) [41]. A 

statistical relationship between soil organic carbon content 

and image brightness value in the blue, red and green of an 

aerial image and a logarithmic equation was developed for 

prediction organic carbon status. After completing a spectral 

test on laboratory soil, the amount of organic matter in the soil 

in the range of 0.35 μm to 1.4 μm was assessed and the form 
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of the reflectance spectrum was calculated. The coefficient of 

the polynomial of degree 3 was used as a parameter to 

determine the shape of the continuous spectral curve for soil. 

Obtaining the spectral reflect values to calculate the 

polynomial coefficients is necessary for this method of 

predicting the organic matter content in TM or ETM images 

(Sharma et al. 2015) [59]. High organic matter content in soils 

its increases soil color changes light to dark the reflectivity of 

the soil spectra decreases and to predict model built using 

remote sensing technique becomes more precise (Xie et al. 

2018) [72]. In an independent data set containing field 

spectroscopic data, random forest regression can more 

accurately estimate status of soil organic carbon. The PLSR 

model on the other hand, over fits the calibration data set. The 

visible range was the most critical wavelength for predicting 

soil organic content (Bangelesa et al. 2020) [3]. Soil organic 

carbon (SOC) content was evaluated and compared using 

ordinary kriging and cokriging geostatistical approaches with 

hyperion data as an independent variable. In general CK 

methods outperformed OK in the geographical to predict of 

SOC content (Saha et al. 2011) [55]. The artificial neural 

network (ANN) model was potential technique to predict the 

distribution of SOC using hyperspectral data in the 

agricultural field (Tiwari et al. 2015) [66]. Remote sensing 

(RS)-based indices using multiple linear regression stepwise 

(MLR- stepwise), partial least squares regression (PLSR) and 

principal component analysis-regression (PCA-R). The MLR-

stepwise model was found to be superior in performance with 

high and minimal RMSE compared to PLSR and PCA-R and 

RMSE models for SOC prediction (Yami et al. 2023) [73]. 

SOC and spectral indices (NDVI and BSI) were found to have 

a statistically significant (Bhunia et al. 2017) [6].  

 

Application of hyperspectral remote sensing in soil 

moisture estimation 

Soil moisture is a vital phase in the hydrological system and 

their evaluations are to predict changes in a region's water 

balance. Direct soil moisture measurements are frequently 

expensive, time consuming, invasive, and technology 

dependant. RS data has been brought out as a promising 

technique for measuring soil moisture characteristics in 

various landscapes and sampling points as an alternative to 

point data in soil by providing a regional description of water 

redistribution at various temporal and geographical 

resolutions. 

The NIR wavelength spectral reflections is high sensitive to 

soil moisture fluctuation than the visible and bands in this 

range were addressed while creating empirical models for soil 

moisture estimate (Gulfo et al. 2012) [24]. Metric learning-

based soil moisture estimation methods outperform traditional 

methods that use principal component analysis for feature 

reduction (Tang et al. 2022) [64]. Precision agriculture can 

make better use of high resolution soil moisture data for 

irrigation scheduling (Lakhankar et al. 2009) [38]. In the 

laboratory, a recently developed model multilayer radiative 

transfer model of soil reflectance provides a good fit to 

measured soil moisture content (Eon et al. 2021) [16]. A 

significant statistical correlation between hyperion data and 

soil moisture probe data (Finn et al. 2011) [18]. We used 

Landsat 8 optical and thermal sensors to retrieve soil moisture 

using random forest (RF), support vector machine (SVM), 

artificial neural network (ANN) and elastic net regression 

(EN) techniques. The RF model outperforms the SVM, ANN 

and EN algorithms in terms of soil moisture predictions 

(Adab et al. 2020) [1]. This study's objective was to determine 

whether SMI from Landsat 8 could be utilized to monitor soil 

moisture in agricultural fields and comprehend its link with 

soil temperature and crop growth (Sholihah et al. 2021) [61]. 

Passive microwaves have a greater probability of detecting 

soil moisture condition on a large scale, but have a low spatial 

resolution. The active microwave has a very high spatial 

resolution, but it has a relatively low return frequency and is 

more susceptible to vegetation and ground hardness. SAR is 

critical for retrieving regional soil moisture maps. Radar data 

(SAR) is considered the best tool to obtain information on soil 

moisture at the field level, but it also presents serious 

problems such as the presence of surface roughness, crop 

cover and variation in soil texture over large agricultural area 

(Snehlata et al. 2021) [62]. The hyperspectral imaging (HIS) 

technology can detect soil type and moisture content. (Haijun 

et al. 2017, Rajitha et al. 2022) [26, 51]. 

 

Application of hyperspectral remote sensing in soil texture  

The most important soil factors is a soil texture, which is 

described as the mixture of three particle sizes such as sand, 

silt and clay. Because soil texture correlates with physical 

attributes such as consistency, rooting capacity and water and 

air retention capacity, it is an important criterion to define soil 

characteristics and plant growing conditions (Blume et al. 

2010) [7]. Soil textural mapping at various scales is required; 

however the traditional method requires a greater number of 

samples and analysis to adequately determine the spatial 

diversity of soil texture (Curcio et al. 2013) [15]. Because 

standard techniques and field surveys are costly users are now 

developing indirectly estimating methods using proximal and 

remote sensors, especially reflected spectrometer (Brown et 

al. 2006) [10]. As input data for PLSR model, hyperion image 

data and soil information were used to successfully assess soil 

texture and generate maps containing regions of similar soil 

characteristics (Kanning et al. 2016) [31]. CHRIS was able to 

perform better than MIVIS in terms of its accuracy and ability 

to predict the texture of soil (Casa et al. 2013) [12]. Sentinal-2 

imagery data are accurate and useful for detect and map 

variation in clay but don’t for silt and sand (Gholizadeh et al. 

2018) [21]. Soil classification using Support Vector Machine 

(SVM) is more significance for soil analysis of very complex 

region without reduction of dimensionality in satellite data 

(Vibhute et al. 2015) [69]. The PLSR technique has potential 

for forecast and assist us in geographical mapped of soil 

textural using hyperion data (George et al. 2015) [20]. 

 

Conclusion 

HRS technology offers an attractive alternative for simple and 

fast soil analysis. However, there are technology constraints 

to get around in order achieving HRS utility. 

 High resolution HRS data must be available, as well as 

the technological skills to analyze such data. 

 To obtain farmer friendly HRS data products, there 

should also be national and regional spectral library 

databases with validated spectral algorithms. 

 HRS, like any other type of remote sensing data, is 

confined to gathering information about the ground 

surface. Models must be developed to extend information 

from the surface soil to the profile parameters. 

Furthermore, the vegetation cover influences the 

evaluation of the soil by distant sensors. 

 

 

https://www.thepharmajournal.com/


 

~ 2429 ~ 

The Pharma Innovation Journal https://www.thepharmajournal.com 

In addition to the complexity mentioned above, it is predicted 

that hyperspectral data will be employed for operational 

monitoring of soil health in the near future. As a result, a 

dedicated space broadcast from polar orbits is critical for 

ground assessment by giving high-quality hyperspectral data. 
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